Konferensartikel

What Taggers Fail to Learn, Parsers Need the Most

Mark Anderson

Carlos Gómez-Rodríguez

Ladda ner artikel

Ingår i: Proceedings of the 23rd Nordic Conference on Computational Linguistics (NoDaLiDa), May 31-June 2, 2021.

Linköping Electronic Conference Proceedings 178:31, s. 309-314

NEALT Proceedings Series 45:31, p. 309-314

Visa mer +

Publicerad: 2021-05-21

ISBN: 978-91-7929-614-8

ISSN: 1650-3686 (tryckt), 1650-3740 (online)

Abstract

We present an error analysis of neural UPOS taggers to evaluate why using gold tags has such a large positive contribution to parsing performance while using predicted UPOS either harms performance or offers a negligible improvement. We also evaluate what neural dependency parsers implicitly learn about word types and how this relates to the errors taggers make, to explain the minimal impact using predicted tags has on parsers. We then mask UPOS tags based on errors made by taggers to tease away the contribution of UPOS tags that taggers succeed and fail to classify correctly and the impact of tagging errors.

Nyckelord

parsing, universal dependencies, part-of-speech tags, error analysis, neural networks

Referenser

Inga referenser tillgängliga

Citeringar i Crossref