Roland Koßel
TLK-Thermo GmbH, Germany
Nils Christian Strupp
TU Braunschweig, Institut für Thermodynamik, Germany
Wilhelm Tegethoff
TLK-Thermo GmbH, Germany
Ladda ner artikelhttp://dx.doi.org/10.3384/ecp09430064Ingår i: Proceedings of the 7th International Modelica Conference; Como; Italy; 20-22 September 2009
Linköping Electronic Conference Proceedings 43:35, s. 318-325
Publicerad: 2009-12-29
ISBN: 978-91-7393-513-5
ISSN: 1650-3686 (tryckt), 1650-3740 (online)
Results of numerical simulations more and more provide a basis for design decisions in an automotive context. When simulating complex systems; one of two approaches can be chosen: The modeling in one multidomain language like Modelica or the utilization of different specialized simulation programs.
This paper demonstrates the simulation of the Heating Ventilation and Air-Conditioning system (HVAC) of a car. The different components are modeled individually and validated with measurement data in separate test benches. A co-simulation using one Dymola instance per component model is then created to represent the whole refrigeration cycle taking into account the inter-component dependencies.
To evaluate the effects introduced by the tool coupling; the results are compared to those of a single Modelica model composed of all component models.
[1] M. Arnold; Simulation Algorithms in Vehicle System Dynamics; Martin-Luther-Universität Halle-Wittenberg; 2004.
[2] T. M. Bandhauer; Measurement and Modeling of Condensation Heat Transfer Coefficients in Circular Microchannels; In: Transactions of the ASME; Vol. 128; 2006.
[3] S. Försterling; Vergleichende Untersuchung von CO2-Verdichtern in Hinblick auf den Einsatz in mobilen Anwendungen; TU Braunschweig; PhD-Thesis; 2004.
[4] D. W. Green; Perry’s chemical engineers’ handbook; The McGraw Hill Companies; ISBN 978-0-07-142294-9; 2007.
[5] R. Kossel et al.; Simulation of Complex Systems using Modelica and Tool Coupling. In: Proceedings of the 5th International Modelica Conference 2006; Vienna; Austria; Modelica Association; 4-5 September 2006.
[6] R. Kossel et al.; Einsatz hybrider Simulationstechnik für die Bewertung mobiler Heiz- und Kühlkonzepte. In: Wärmemanagement des Kraftfahrzeugs VI; Berlin; Germany; Haus der Technik; June 2008.
[7] R. Kübler; Modulare Modellierung und Simulation mechatronischer Systeme; Universität Stuttgart; PhD-thesis; 2000.
[8] N. Lemke; Untersuchung zweistufiger Flüssigkeitskühler mit dem Kältemittel CO2; TU Braunschweig; PhD-thesis; 2004.
[9] K. Nyström and P. Fritzson; Parallel Simulation with Transmission Lines in Modelica. In: Proceedings of the 5th International Modelica Conference 2006; Vienna; Austria; Modelica Association; 4-5 September 2006.
[10] Y.-G. Park et al.; Air-Side Heat Transfer and Friction Correlations for Flat-Tube Louver-Fin Heat Exchngers; In: Journal of Heat Transfer; February 2009; vol. 131.
[11] W. Puntigam et al.; Transient Co-Simulation of Comprehensive Vehicle Models by Time Dependent Coupling. In: SAE 2006 Transactions Journal of Passenger Cars: Mechanical Systems; ISBN 978-0-7680-1838-7; pages 1516 - 1525.
[12] Robert G. Sargent; A tutorial on validation and verification of simulation models; In: Proceedings of the 1988 Winter Simulation Conference; San Diego; USA; 12-14 December 1988.
[13] John R. Thome; Engineering Data Book III; 2004.
[14] J. R. Thome; Heat transfer model for evaporation in microchennels Part 1: presentation of the model; In: International Journal of Heat and Transfer; March 2004; vol. 47; pp. 3375-3385.
doi: 10.1016/j.ijheatmasstransfer.2004.01.006.