Konferensartikel

New Method for Predicting the Performance of Solar Pond in any Sunny Part of the World

Adel O. Sharif
Centre for Osmosis Research & Applications, Chemical & Process Engineering Department, Faculty of Engineering & Physical Sciences, Surrey University, UK

Hazim Al-Hussaini
Centre for Osmosis Research & Applications, Chemical & Process Engineering Department, Faculty of Engineering & Physical Sciences, Surrey University, UK

Ibrahim A. Alenezi
Centre for Osmosis Research & Applications, Chemical & Process Engineering Department, Faculty of Engineering & Physical Sciences, Surrey University, UK

Ladda ner artikelhttp://dx.doi.org/10.3384/ecp110573702

Ingår i: World Renewable Energy Congress - Sweden; 8-13 May; 2011; Linköping; Sweden

Linköping Electronic Conference Proceedings 57:5, s. 3702-3709

Visa mer +

Publicerad: 2011-11-03

ISBN: 978-91-7393-070-3

ISSN: 1650-3686 (tryckt), 1650-3740 (online)

Abstract

The solar pond is considered one of the most reliable and economic solar systems. The collecting and storing of the solar energy is in one system; so the heat in summer can be utilised in winter in the same system. To predict the potential of solar pond at any part of the world a mathematical model is established to calculate the parameters affecting the performance of the solar pond through a computer programme.. The solar radiation input to the pond is calculated using the daily monthly average method. One dimensional steady state and transient assumptions in the gradient zone are used to predict the effect of any parameter on the solar pond performance. The results show excellent agreement with the experimental data under the steady state assumption. Many parameters affecting the performance of the solar pond such as shading effect; depths of the upper; gradient and storage zones; ground temperature and covered insulation for different climates and different latitudes have been studied. The results show that the solar pond has high potential even for colder climates such as that of the UK; where the heat could be used for a number of applications including domestic and industrial.

Nyckelord

Solar Pond; Solar Energy; Modelling

Referenser

Inga referenser tillgängliga

Citeringar i Crossref