Konferensartikel

A Generalized Power-Based Modelica Library with Application to an Industrial Hydraulic Plant

Ilja Alkov
Institute of System Dynamics and Mechatronics, University of Applied Sciences Bielefeld, Bielefeld, Germany

Robin Diekmann
Institute of System Dynamics and Mechatronics, University of Applied Sciences Bielefeld, Bielefeld, Germany

Dirk Weidemann
Institute of System Dynamics and Mechatronics, University of Applied Sciences Bielefeld, Bielefeld, Germany

Ladda ner artikelhttp://dx.doi.org/10.3384/ecp14096617

Ingår i: Proceedings of the 10th International Modelica Conference; March 10-12; 2014; Lund; Sweden

Linköping Electronic Conference Proceedings 96:65, s. 617-626

Visa mer +

Publicerad: 2014-03-10

ISBN: 978-91-7519-380-9

ISSN: 1650-3686 (tryckt), 1650-3740 (online)

Abstract

This contribution presents a Modelica implementation of the generalized power-based modeling approach conforming to the bond graph methodology. The corresponding developed library BondGraph is discussed in detail. It allows graphical modeling according to the bond graph formalism; and contains common bond graph elements; as well as specific nonlinear elements; especially related to hydraulic effects. Furthermore; several composed models are provided; such as switching valves; pipes; cylinders; etc. A combination with blocks of the Modelica Standard Library is possible. The application of BondGraph to an industrial plant is described demonstrating capabilities of the library.

Nyckelord

Power-based model; bond graph; library; Modelica; hydraulic

Referenser

[1] D. Jeltsema and J. M. A. Scherpen, “Multidomain modeling of nonlinear networks and systems,” IEEE Control Systems Magazine, vol. 29, pp. 28–59, 2009.

[2] R. A. Layton, Principles of Analytical System Dynamics. Springer, 1998.

[3] W. Borutzky, Bond Graph Methodology. Springer, 2010.

[4] I. Alkov and R. Diekmann. (2013) BondGraph library. [Online]. Available: https://www.modelica.org/libraries

[5] H. M. Paynter, Analysis and Design of Engineering Systems. M.I.T. Press, 1961.

[6] J. F. Broenink, “20-sim software for hierarchical bond-graph/block-diagram models,” Simulation Practice and Theory, vol. 7, no. 5-6, pp. 481–492, 1999.

[7] H. Murrenhoff, Grundlagen der Fluidtechnik - Teil 1: Hydraulik. Shaker, 2012.

[8] C. J. A. Roelands, J. C. Vlugter, and H. I. Waterman, “The viscosity-temperature-pressure relationship of lubricating oils and its correlation with chemical constitution,” ASME Journal of Basic Engineering, vol. 11, pp. 601–611, 1963.

[9] J. H. Spurk and N. Aksel, Strömungslehre, Einführung in die Theorie der Strömungen. Springer, 2010.

[10] R. Etlender, “Modellierung und Simulation der Wellenausbreitung in flexiblen hydraulischen Leitungen,” Ph.D. dissertation, Universität Stuttgart, 2012.

[11] J. Nikuradse, “Strömungsgesetze in rauhen Rohren,” V.D.I. Forschungsheft, vol. 361, pp. 1–22, 1933.

[12] C. F. Colebrook, “Turbulent flow in pipes, with particular reference to the transition region between the smooth and rough pipe laws,” Journal of Institution of Civil Engineers, vol. 11, no. 4, pp. 133–156, 1939.

[13] L. F. Moody, “Friction factors for pipe flow,” Transactions of the ASME, vol. 66, pp. 671–684, 1944.

[14] H. Darcy, Les Fontaines Publiques de la Ville de Dijon. Dalmont, 1856.

[15] S. E. Haaland, “Simple and explicit formulas for the friction factor in turbulent pipe flow,” Transactions of the ASME, Journal of Fluids Engineering, vol. 105, pp. 89–90, 1983.

[16] I. Alkov, “Verallgemeinertes Modell hydraulischer Ventile,” 2012, FLUIDON Conference 2012.

[17] F. E. Cellier and A. Nebot, “The Modelica bond graph library,” Proceedings of the 4th International Modelica Conference, pp. 57–65, 2005.

[18] J. Heinze, R. Diekmann, I. Alkov, and D.Weidemann, “Model-based energy optimization of assembly systems,” 2013, 35th IAT Colloquium of Automation.

Citeringar i Crossref