Nils Ahlbrink
German Aerospace Center, Institute of Technical Thermodynamics, Germany
Boris Belhomme
German Aerospace Center, Institute of Technical Thermodynamics, Germany
Robert Pitz-Paal
German Aerospace Center, Institute of Technical Thermodynamics, Germany
Ladda ner artikelhttp://dx.doi.org/10.3384/ecp09430048Ingår i: Proceedings of the 7th International Modelica Conference; Como; Italy; 20-22 September 2009
Linköping Electronic Conference Proceedings 43:80, s. 685-693
Publicerad: 2009-12-29
ISBN: 978-91-7393-513-5
ISSN: 1650-3686 (tryckt), 1650-3740 (online)
The start-up of the PS10 power plant in Seville; Spain; in 2007 marked the entrance of solar tower power plants into the commercial state. Questions about the right operational strategy; particularly during unsteady operation states; come to the fore; and therewith the need to carry out transient simulations of entire tower power plants including the heliostat field. Meeting this necessity; the presented simulation approach opens the way to transient full plant simulations of solar tower power plants. A detailed
heliostat field model was linked to a dynamic receiver model by coupling both simulation tools. A second coupling was established to a tool hosting a control panel of the heliostat field model. With this simulation approach; a start-up procedure and a tracking stop were simulated delivering different transient behaviors of local absorber temperatures and mass flows.
[1] Belhomme; B.; Pitz-Paal; R.; Schwarzbözl; P.; Ulmer; S. (2009): A new fast Ray Tracing Tool for High-Precision Simulation of Heliostat Fields; Journal of Solar Energy Engineering; 131 (3); 2009; in Press.
doi: 10.1115/1.3139139.
[2] Tummescheid; H. (2002): Design and Implementation of Object-Oriented Model Libraries using Modelica. Thesis; Department of Automatic Control; Lund Institute of Technology; Lund; August 2002
[3] Modelica Association (2009): Modelica® - A Unified Object-Oriented Language for Physical Systems Modeling; Language Specifications; Version 3.1; May 27th; 2009
[4] Dynasim AB (2004): Dymola Version 7.1 http://www.dynasim.se
[5] Ahlbrink; N.; Alexopoulos; S.; Andersson; J.; Belhomme; B.; Boura; C.; Gall; J.; Hirsch; T. (2009): vICERP – The virtual Institute of Central Receiver Power Plants: Modeling and Simulation of an Open Volumetric Air Receiver Power Plant. Conference Proceedings; MATMOD Conference 2009; 263; Vienna; February 11-13; 2009
[6] Casella; F.; Otter; M.; Proelss; K.; Richter; C.; Tummescheid; H. (2006): The Modelica Fluid and Media library for modeling of incompressible and compressible thermo-fluid pipe networks. Conference Proceedings; Modelica Conference 2006; 631-640; Vienna; September 4-5 2006
[7] Schmitz; M.; Boura; C.; Ahlbrink; N.; Gall; J.; Andersson; J. (2009): Optimized control of a hot –gas cycle for solar thermal power plants. Conference Proceedings; Modelica Conference 2009; Como; September 20-22; 2009; in Press
[8] Garcia; P.; Ferriere; A. (2008): Codes for Solar Flux Calculation dedicated to Central Receiver System Application: A comparative Review; Journal of Solar Energy; 3 (2008) 189-197.
doi: 10.1016/j.solener.2007.08.004.
[9] Hoffschmidt; B. (1997): Vergleichende Bewertung verschiedener Konzepte volumetrischer Strahlungsempfänger. Forschungsbericht / Deutsches Zentrum für Luft- und Raumfahrt e.V.; 1997; 35; Köln: DLR; 1997. 212 S.: ISBN: 1434-8454; Aachen; Technische Hochschule; Diss.; Reportnr.: DLR FB 97 35
[10] Fritzson; P. (2004): Principles of objectoriented modeling and simulation with Modelica 2.1. Wiley-IEEE Press; 2004