E. Abdou
Gent University - iMinds - Multimedia Lab, Ledeberg-Ghent, Belgium
Ladda ner artikelIngår i: Proceedings of SIGRAD 2013; Visual Computing; June 13-14; 2013; Norrköping; Sweden
Linköping Electronic Conference Proceedings 94:9, s. 61-65
Publicerad: 2013-11-04
ISBN: 978-91-7519-455-4
ISSN: 1650-3686 (tryckt), 1650-3740 (online)
Deep Brain Stimulation is an alternative way for treating some motion disorders such as Parkinson’s disease and essential tremor. In order to stimulate some brain centers during this intervention; high frequency electric fields are generated close by them. This involves permanently implanting a number of electrodes inside the brain. The final position of the electrodes is specified by the neurologist with the aid of fused data from CT and MR scans. In order to improve the therapeutic benefits of this treatment; the generated electric field must be studied. I developed a visualization and image analysis framework for visualize and insert the electrodes inside the brain. A mesh generator for the brain was added to the framework. The result model can be used by a PDE solver for interpreting the electric field distribution.
[AM08] ASTROM M ZRINZO LU T. S. T. E. H. M. W. K.: Method for patient-specific finite element modeling and simulation of deep brain stimulation. Med Biol Eng Comput (2008). 2
[BA94] BENABID AL POLLAK P G. C. E. A.: Acute and long-term effects of subthalamic nucleus stimulation in parkinson’s disease. StereotacticFunction Neurosurgery (1994). 1
[cga] CGAL; Computational Geometry Algorithms Library. http://www.cgal.org. 4
[DBB09a] DOBRINA BOLTCHEVA M. Y.; BOISSONNAT J.-D.: Feature preserving delaunay mesh generation from 3d multi- material images. Computer Graphics Forum (2009). 2
[DBB09b] DOBRINA BOLTCHEVA M. Y.; BOISSONNAT J.-D.: Mesh generation from 3d multi-material images. Medical Image Computing and Computer-Assisted Intervention (2009); 283–
290. 2
[DT08] DANIEL TARSY JERROLD L. VITEK P. A. S. M. S. O.: Deep Brain Stimulation in Neurological and Psychiatric Disorders. Humana Press; 2008. 2
[ea] ET AL C. C. M.: Electric field and simulating influence generated by deep brain stimulation of subthalamic nucleus. 3
[FA11] FYTAGORIDIS A Ã?E STRÃ?UM M W. K. B. P.: Stimulation induced side effects in the posterior subthalamic area: distribution; characteristics and visualization. Clinical Neurology and Neurosurgery (2011). 2
[GP01] GILDENBERG P L SPIEGEL W.: The early years. Stereotact Funct Neurosurg 77 (2001); 11–16. 2
[HM] HENRI MAITRE THIERRY GERAUD I. B.: Structures from mr images using morphological approaches. Medical Image Analysis; Oxford University Press. 2
[KW03] KRUGER J.; WESTERMANN R.: Acceleration techniques for gpu-based volume rendering. In Visualization; 2003. VIS 2003. IEEE (2003); pp. 287–292. 3
[Law77] LAWSON C. L.: Software for c1 surface interpolation. Mathematical Software 3 (1977); 161–194. 2
[MTS] : DBS electrode specification model 3387. 4
[Owe98] OWEN S. J.: A survey of unstructured mesh generation technology. In INTERNATIONAL MESHING ROUNDTABLE (1998); pp. 239–267. 4
[PG08] P. GEMMAR O. GRONZ K. F. P. M. F. H. C. D.: Automated target location and trajectory selection for stereotactic planning in deep brain stimulation. Biosignal 2008 (2008). 1; 2
[Sch05] SCHARSACH H.: Advanced gpu raycasting. In Proceedings of CESCG 2005 (2005); pp. 69–76. 3
[SH10] SIMONE HEMM K. W.: Stereotactic implantation of deep brain stimulation electrodes: a review of technical systems; methods and emerging tools. Medical and Biological Engineering and computing 48 (2010); 611–624. 2
[She98] SHEWCHUK J. R.: Tetrahedral mesh generation by delaunay refinement. In Proc. 14th Annu. ACM Sympos. Comput. Geom (1998); pp. 86–95. 4