Uwe Bau
RWTH Aachen University, Institute of Technical Thermodynamics, Aachen, Germany
Franz Lanzerath
RWTH Aachen University, Institute of Technical Thermodynamics, Aachen, Germany
Manuel Gräber
TU Braunschweig, Institute of Thermodynamics, Braunschweig, Germany
Stefan Graf
RWTH Aachen University, Institute of Technical Thermodynamics, Aachen, Germany
Heike Schreiber
RWTH Aachen University, Institute of Technical Thermodynamics, Aachen, Germany
Niklas Thielen
RWTH Aachen University, Institute of Technical Thermodynamics, Aachen, Germany
André Bardow
RWTH Aachen University, Institute of Technical Thermodynamics, Aachen, Germany
Ladda ner artikelhttp://dx.doi.org/10.3384/ecp14096875Ingår i: Proceedings of the 10th International Modelica Conference; March 10-12; 2014; Lund; Sweden
Linköping Electronic Conference Proceedings 96:91, s. 875-883
A library for dynamic modeling adsorption based thermal systems like chillers; heat pumps; thermal storages or desiccant units is presented. Adsorption devices serve a wide range of applications but consist of the same basic components. By modeling these basic components; the presented model library allows to investigate any interesting topology. Thereby this adsorption library gives the user the opportunity to design and optimize adsorption systems quickly and efficiently. To demonstrate the flexibility of the library; three validated examples are presented: A desiccant unit; a thermal storage; and an adsorption chiller.
Adsorption; simulation; validation; modular; chiller; thermal storage; heat pump; desiccant
[1] Meunier F E. Adsorption heat powered heat pumps. Applied Thermal Engineering, 61, pp. 830-836, 2013.
[2] Daou K, Wang R Z, Xia Z Z. Desiccant cooling air conditioning: a review. Renewable and Sustainable Energy Review, 10, pp. 55-77, 2006.
[3] Douss N, Meunier F E, Sun L-M. Predictive Model and Experimental Results for a Two-Adsorber Solid Adsorption Heat Pump. Industrial
and Engineering Chemistry Research, 27, pp. 310-316, 1988.
[4] Maggio G, Freni A, Restuccia G. A dynamic model of heat and mass transfer in a double-bed adsorption machine with internal heat recovery. International Journal of Refrigeration, 29, pp.589-600, 2006.
[5] Wang X, Chua H T. Two bed silica gel-water adsorption chillers: An effectual lumped parameter model. International Journal of Refrigeration, 30, pp. 1417-1426, 2007.
[6] Schicktanz M, Núñez T. Modelling of an adsorption chiller for dynamic system simulation. International Journal of Refrigeration, 32, pp. 588-595, 2009.
[7] Joos A, Dietl K, Schmitz G. Thermal Separation: An Approach for a Modelica Library for Absorption, Adsorption and Rectification. In: Proceedings 7th Modelica Conference, 2009.
[8] Kärger J, Ruthven D M, Theodorou D N. Diffusion in Nanoporous Materials. Wiley-VCH, 2012.
[9] Wang D, Zhang J, Tian X, Liu D, Sumathy K. Progress in silica gel-water adsorption refrigeration technology. Renewable and Sustainable Energy Reviews, 30, pp. 85-104, 2014.
[10] Misha S, Mat S, Ruslan M H, Sopian K. Review of solid/liquid desiccant in the drying applications and its regeneration methods. Renewable and Sustainable Energy Reviews, 16, pp. 4686-4707, 2014.
[11] Langmuir I. The Adsorption of Gases on Plane Surfaces of Glass, Mica and Platinum. Journal of the American Chemical Society, 40, pp. 1361-1403, 1918.
[12] Brunauer S, Emmett P H, Teller E. Adsorption of Gases in Multimolecular Layers. Journal of the American Chemical Society, 60, pp. 309-319, 1938.
[13] Dubinin M M. Adsorption in micropores. Journal of Colloid and Interface Science, 23, pp. 487-499, 1967.
[14] Polanyi M. Adsorption of gases by a nonvolatile adsorbent. Verhandlungen der Deutschen Physikalischen Gesellschaft, 18, pp. 55-80,
1916.
[15] Gräber M, Kosowski K, Richter C, Tegethoff W. Modelling of heat pumps with an object-oriented model library for thermodynamic systems. Mathematical and Computer Modelling of Dynamical Systems, 16, pp. 195-209, 2010.
[16] Dittus W, Boelter L M K. Heat transfer in automobile radiators of the tubular type. University of California - Publications in Engineering, 2, pp. 443 - 461, 1930.
[17] Sieder E N, Tate G E. Heat Transfer and Pressure Drop of Liquids in Tubes. Industrial and Engineering Chemistry, 28, pp. 1429-1435, 1936.
[18] Pesaran A A, Mills A F. Moisture transport in silica gel packed beds II. Experimental study. International Journal of Heat and Mass Transfer, 6, pp. 1051–1060, 1987.
[19] Pesaran A A, Mills A F. Moisture transport in silica gel packed beds I. Theoretical study. International Journal of Heat and Mass Transfer, 6, pp. 1037–1049, 1987.
[20] Hougen O A, Marshall W R. Adsorption from a Fluid Stream flowing through a stationary Granular Bed. Chemical Engineering Progress, 46, pp. 197-208, 1947.
[21] Schreiber H, Graf S, Lanzerath F, Bardow A. Adsorption heat storage for combined heat and power units in industrial batch processes. International Sorption Heat Pump Conference, 2014.
[22] Binkert J, Lauer J, Diaconu A, Ruß W, Schreiber H, Bardow A. Entwicklung einer Verfahrenskombination aus Zeolithwärmepumpe, Vakuumeindampfsystem und Blockheizkraftwerk zur energieeffizienten Wärmeversorgung von Brauereien. Deutscher Bund für Umwelt und Naturschutz (DBU), 2013.
[23] Núñez T. Charakterisierung und Bewertung von Adsorbentien für Wärmetransformationsanwendungen. PhD thesis, Albert-Ludwigs-Universität Freiburg, 2001.
[24] Lanzerath F, Seiler J, Bau U, Bardow A. A modular experimental and simulation approach for the systematic development of adsorption heat pumps. International Sorption Heat Pump Conference, 2014.
[25] Schawe D. Theoretical and Experimental Investigations of an Adsorption Heat Pump with Heat Transfer between two Adsorbers. PhD thesis, Universität Stuttgart, 2001.