Analysis of Visual Arts Collections

Hermann Pflüger
Institute for Visualization and Interactive Systems (VIS), University of Stuttgart, Germany

Thomas Ertl
Institute for Visualization and Interactive Systems (VIS), University of Stuttgart, Germany

Ladda ner artikel

Ingår i: Proceedings of SIGRAD 2015, June 1st and 2nd, Stockholm, Sweden

Linköping Electronic Conference Proceedings 120:1, s. 1-4

Visa mer +

Publicerad: 2015-11-24

ISBN: 978-91-7685-855-4

ISSN: 1650-3686 (tryckt), 1650-3740 (online)


In this paper, we introduce a projection technique that aims to place points representing individual images in a two-dimensional visualization space so that proximity in this space reflects some sort of similarity between the images. This visualization technique enables users to employ their visual ability to evaluate the significance of metadata as well as the characteristics of classification methods and distance functions. It can also be used to recognize and analyze patterns in large sets of images, and to get an overview of the entire body of pictures from a given set. The projection technique only uses a similarity function for calculating a suitable distribution of the points in the visualization space and has a linear time complexity.


2D visualization; information search and retrieval; clustering


[Aly11] ALY M.: Searching Large-Scale Image Collections. PhD thesis, California Institute of Technology, 2011. 1

[CBP09] CHOO J., BOHN S., PARK H.: Two-stage framework for visualization of clustered high dimensional data. In Visual Analytics Science and Technology, 2009. VAST 2009. IEEE Symposium on (2009), IEEE, pp. 67–74. 2

[CC08] COX M. A. A., COX T. F.: Handbook of Data Visualization. Springer Berlin Heidelberg, 2008. 2

[Cha96] CHALMERS M.: A linear iteration time layout algorithm for visualising high-dimensional data. In Visualization ’96. Proceedings. (Oct 1996), pp. 127–131. 2

[CLRP13] CHOO J., LEE C., REDDY C. K., PARK H.: Utopian: User-driven topic modeling based on interactive nonnegative matrix factorization. Visualization and Computer Graphics, IEEE Transactions on 19, 12 (2013), 1992–2001. 2

[Ead84] EADES P. A.: A heuristics for graph drawing. Congressus Numerantium 42 (1984), 146–160. 2

[HNA*10] HOLMQVIST K., NYSTRÖM M., ANDERSSON R., DEWHURST R., JARODZKA H., VAN DE WEIJER J.: Eye tracking: A comprehensive guide to methods and measures. Oxford University Press, 2010. 1

[HR02] HINTON G. E., ROWEIS S. T.: Stochastic neighbor embedding. In Advances in neural information processing systems (2002), pp. 833–840. 2

[HS95] HOFFMAN J., SUBRAMANIAM B.: The role of visual attention in saccadic eye movements. Perception & Psychophysics 57 (1995), 6: 787–795. 1

[JC80] JUST M. A., CARPENTER P. A.: A theory of reading: From eye fixations to comprehension. Psychological Review 4 (1980), 329 – 354. 1

[KR08] KAUFMAN L., ROUSSEEUW P. J.: Finding Groups in Data; Introduction. John Wiley & Sons, Inc., 2008, pp. 1–67. 3

[MC04] MORRISON A., CHALMERS M.: A pivot-based routine for improved parent-fnding in hybrid mds. Information Visualization 3 (2004), 109–122. 2

[OK89] ÖMER, KALANTARI B.: Approximating the diameter of a set of points in the euclidean space. Inf. Process. Lett. 32, 4 (Sept. 1989), 205–211. 2

[PHRE15] PFLÜGER H., HÖFERLIN B., RASCHKE M., ERTL T.: Simulating fixations when looking at visual arts. ACM Transactions on Applied Perception 12, 3 (May 2015). 1

[Saa93] SAARINEN J.: Shifts of visual attention at fixation and away from fixation. Vision Research 33 (1993), 8: 1113–1117. 1

[TMN03] TEJADA E., MINGHIM R., NONATO L. G.: On improved projection techniques to support visual exploration of multidimensional data sets. Information Visualization 2, 4 (Dec. 2003), 218–231. 2

[vdM14] VAN DER MAATEN L.: Accelerating t-sne using treebased algorithms. Journal of Machine Learning Research 15 (2014), 3221–3245. 2

[VdMH08] VAN DER MAATEN L., HINTON G.: Visualizing data using t-sne. Journal of Machine Learning Research 9, 2579-2605 (2008), 85. 2

Citeringar i Crossref