Investigation of the Influence of Controller Approaches on Room Thermal Behaviour A Simulation Study

Kristin Majetta
Fraunhofer IIS EAS, Dresden, Germany

Christoph Clauss
Fraunhofer IIS EAS, Dresden, Germany

Christoph Nytsch-Geusen
Fachgebiet für Versorgungsplanung und Versorgungstechnik, Berlin University of the Arts, Berlin, Germany

Ladda ner artikelhttp://dx.doi.org/10.3384/ecp17132161

Ingår i: Proceedings of the 12th International Modelica Conference, Prague, Czech Republic, May 15-17, 2017

Linköping Electronic Conference Proceedings 132:16, s. 161-169

Visa mer +

Publicerad: 2017-07-04

ISBN: 978-91-7685-575-1

ISSN: 1650-3686 (tryckt), 1650-3740 (online)


To control the room temperature normally special developed and adapted controllers are used. This development is both time-consuming and expensive. Therefore, this paper shows the first steps to achieve the goal of developing a methodology to provide rules and guidelines for typical use cases of those controllers with regard to given rooms and their installed HVAC technology. Thereby it should be possible to choose suitable controllers for a wide range of rooms without the necessity of an expensive development process. To achieve this goal a simulation study will be performed. This paper presents first steps of this investigation. This includes the choice development of four different, representative room models as well as five controller models of important controller types. Simulations of well defined scenarios analyze the eligibility of the controller models regarding net energy consumption and comfort. First optimization results to improve the quality of the controllers are shown and further steps are explained.


Building Simulation, Room Controller, Room Thermal Behavior, Optimization


Abdolreza Rahmati, Farzan Rashidi, Mehran Rashidi: A hybrid fuzzy logic and PID controller for control of nonlinear HVAC systems. Proceedings of IEEE International Conference on Systems, Man and Cybernetics, pp. 2249-2254, 2003.

Abdul Afram, Farrokh Janabi-Sharifi. Theory and application of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, pp. 343-355, 2014. http://dx.doi.org/10.1016/j.buildenv.2013.11.016

Alessandra Parisio, Marco Molinari, Damiano Varagnolo, et al.: A Scenario-based Predictive Control Approach to Building HVAC Management Systems. IEEE International Conference on Automation Science and Engineering (CASE), pp. 428-435, 2013.

Christoph Clauß, Eva Fordran, Matthias Franke, et al. Entwicklung und Optimierung von Gebäude-Management- Systemen. Fifth German-Austrian IBPSA Conference, pp.166-173, Aachen, 2014.

Christoph Nytsch-Geusen, Jörg Huber, Manuel Ljubijankic, Jörg Rädler. Modelica BuildingSystems – eine Modellbibliothek zur Simulation komplexer energietechnischer Gebäudesysteme. Bauphysik 35, Heft1, Ernst & Sohn Verlage für Architektur und technische Wissenschaften GmbH & Co. KG, 2013

Deutscher Wetterdienst. Testreferenzjahre von Deutschland für mittlere, extreme und zukünftige
Witterungsverhältnisse. Handbuch, 2014. Website: www.dwd.de

Dymola Website: http://www.3ds.com/productsservices/catia/products/dymola

Elisa Carlon, Markus Schwarz, Christoph Schmidl, et al. Low Energy Houses Heated By Biomass Boilers: Optimization Of The Heating System Control Strategy By Means Of Dynamic Simulation. 3rd International High Performance Buildings Conference, pp.3303/1 – 3303/8, 2014.

EnergyPlus Website: https://energyplus.net/

Frauke Oldewurtel, Alessandra Parisio, Colin N. Jones et al.: Energy efficient building climate control using stochastic model predictive control and weather predictions. Proceedings of American control conference, 2010

Friedrich Sick, Sebastian Dietz, Gustav Hillmann, Margarethe Korolkow, Susanne Rexroth. Monitoring Plusenergie-Grundschule Hohen Neuendorf und IEA Task 41 (Solar Energy and Architecture). Schlussbericht, Berlin, 2015, Website: http://www.enob.info/fileadmin/media/Publikationen/EnBau/Projektberichte/27_Projektbericht_EnBau_0327430M_-_Monitoring_Schule_Hohen-Neuendorf.pdf

Kristin Majetta, Christoph Clauß, Jürgen Haufe, et al. Design and Optimization of an Energy Manager for an Office Building. ASIM/GI-Section Workshop – Simulation of Technical Systems & Methods in Modeling and Simulation, pp. 289-296, 2015.

Michael Wetter. Design optimization with GenOpt. Building Energy Simulation User News 21, p. 200, 2000.

Patrick Lauenburg, Janusz Wollerstrand. Adaptive control of radiator systems for a lowest possible district heating return temperature. Energy and Building 72, pp. 132-140. 2014. http://dx.doi.org/10.1016/j.enbuild.2013.12.011

Stephan Seidel, Christoph Clauß. Eva Fordran, et al.: Design and Optimization of Building Energy Management Systems. Proceedings of 18th ITI Symposium. pp. 329-337, November 9-11, Dresden, 2015.

Rolf Isermann. Identifikation dynamischer Systeme 1, Springer-Verlag, 2. Auflage, pp. 189-195, 1991.
TRNSYS website: http://www.trnsys.com/

Yudong Ma, Francesco Borrelli, Brandon Hencey, et al.: Model predictive control of thermal energy storage in building cooling systems. Proceedings of the 48th IEEE conference on decision and control, pp. 392-397, Shanghai, China, 2009.

Hermann Recknagel, Eberhard Sprenger, Ernst-Rudolf Schramek.: Taschenbuch für Heizung+Klimatechnik Oldenbourg Industrieverlag GmbH; p.804, 2011/2012.

Citeringar i Crossref