Extended Modelica Model for Heat Transfer of Two-Phase Flows in Pipes Considering Various Flow Patterns

Timm Hoppe
XRG Simulation GmbH, Harburger Schlossstr. 6-12, 21079 Hamburg Germany

Friedrich Gottelt
XRG Simulation GmbH, Harburger Schlossstr. 6-12, 21079 Hamburg Germany

Stefan Wischhusen
XRG Simulation GmbH, Harburger Schlossstr. 6-12, 21079 Hamburg Germany

Ladda ner artikelhttp://dx.doi.org/10.3384/ecp17132467

Ingår i: Proceedings of the 12th International Modelica Conference, Prague, Czech Republic, May 15-17, 2017

Linköping Electronic Conference Proceedings 132:53, s. 467-476

Visa mer +

Publicerad: 2017-07-04

ISBN: 978-91-7685-575-1

ISSN: 1650-3686 (tryckt), 1650-3740 (online)


Boiling in vertical and horizontal pipes is a complex process defining transient and static performance of various technical applications. An extensive literature review taking all relevant boiling regimes is presented. The models from the literature are evaluated with respect to accuracy and suitability for system simulation application. A set of sub-models for each of the existing boiling phenomena is implemented and applied to a global boiling model. The work pays special attention to smooth transition between the sub-models and to numerical efficient solutions with respect to the consideration of the boiling crisis.


Boiling model, heat transfer, two phase flow, pipe flow, evaporation, critical heat flux, boiling crisis, subcooled boiling, saturated boiling, flow pattern, Fluid-Dissipation, ClaRa


H. Abel-Larsen, A. Olsen, J. Miettinen, T. Siikonen, J. Rasmussen, A. Sjoberg, and K. Becker. Heat transfer correlations in nuclear reactor safety calculations. Technical report, Nordic liaison committee for atomic energy, 1985.

H. Auracher, G. Drescher, D. Hein, O. Herbst, A. Katsaounis, V. Kefer, and W. Köhler. VDI Heat Atlas, chapter Hbc – Kritische Siedezustände. 9th edition, 2002.

D. Biberg. An explicit approximation for the wetted angle in two-phase stratified pipe flow. The canadian Jounal of Chemical Engineering, 1999.

N.O.W.W. Brinkmeier. Flexibilisierung von Kraftwerken. PhD thesis, Technische Universität Braunschweig, 2015.

J. Brunnemann, F. Gottelt, K. Wellner, A. Renz, A. Thüring, V. Roeder, C. Hasenbein, C. Schulze, G. Schmitz, and J. Eiden. Status of ClaRaCCS: Modelling and Simulation of Coal-Fired Power Plants with CO2 Capture. Proceedings of the 9th International Modelica Conference, Munich, Germany, pages 609 – 618, 2012.

J. C. Chen. Correlation for boiling heat transfer to saturated fluids in convective flow. Industrial and Engineering Chemistry Process Design and Development, 5:322–329, 1966.

E.N. Ganic and W.M. Rohsenow. Dispersed flow heat transfer. International Journal of Heat and Mass Transfer, 20:855–866, 1977.

D.C. Groeneveld. Post-dryout heat transfer at reactor working conditions. In Proceedings of the National Topical Meeting on Water Reactor Safety. Atomic Energy of Canada Limited, 1973.

D.C. Groeneveld. The 2006 CHF look-up table. Nuclear Engineering and Design, 237:1909–1922, 2007.

K.E. Gungor and R.H.S Winterton. Simplified general correlation for saturated flow boiling and comparisons of correlations with data. Chemical Engineering Research and Design, 1987.

M. Hänninen and J. Ylijoki. The one-dimensional seperate twophase flow model of apros. Technical report, Technical Research Centre of Finland, 1992.

E. Hahne K. Spindler, N. Shen. Vergleich von Korrelationen zum Wärmeübergang beim unterkühlten Sieden. Wärme- und Stoffübertragung, 1990.

A. Katsaounis. VDI Heat Atlas, chapter Hbd -Wärmeübergang nach der Siedekrise. 9th edition, 2002.

Ohno H. Katto Y. An improved version of the generalized correlation of critical heat flux for the forced convective boiling in uniformly heated vertical tubes. Int. Journal for Heat Mass Transfer, 27, 1984.

W. Köhler. Einfluß des Benetzungszustandes der Heizfläche auf Wärmeübergang und Druckverlust in einem Verdampferrohr. PhD thesis, 1983.

M.S. Owen, editor. ASHRAE Handbook - Fundamentals, chapter 5 - Two Phase Flow. ASHRAE, 2005.

J.J. Schröder. VDI Heat Atlas, chapter Hba – Strömungssieden unterkühlter Flüssigkeiten. 9th edition, 2002.

M. M. Shah. Chart Correlation for Saturated Boiling Heat Transfer: Equations and Further Study. ASHRAE Transaction1982, 88, 1982.

D. Steiner. VDI Heat Atlas, chapter Hbb – Strömungssieden gesättigter Flüssigkeiten. 9th edition, 2002.

D. Steiner and J. Taborek. Flow Boiling Heat Transfer in Vertical Tubes Correlated by an Asymptotic Model. Heat Transfer Engineering, 13(2):43–69, 1992.

The ClaRa development team. ClaRa - Simulation of Clausius-Rankine cycles. URL www.claralib.com. fetched Dec, 15th 2016.

J. R. Thome, editor. Engineering Data Book III, chapter 10 -Boiling Heat Transfer inside Plain Tubes. Wolverine Tube Inc., 2006a.

J. R. Thome, editor. Engineering Data Book III, chapter 18 - Post Dry-Out Heat Transfer. Wolverine Tube Inc., 2006b.

T. Vahlenkamp and S. Wischhusen. FluidDissipation for Applications - A Library for Modelling of Heat Transfer and Pressure Loss in Energy Systems. In Proceedings 7th Modelica Conference, Como, Italy, September 2009.

K.E. Gungor R.H.S Winterton. A general correlation for flow boiling in tubes and annuli. Int. J. Heat Mass Transfer, 29(3): 351–358, 1986.

XRG Simulation. URL http://www.xrg-simulation.de/de/produkte/xrg-library/xrg-fluiddissipation-library. fetched Dec., 15th 2016.

Citeringar i Crossref