Konferensartikel

Design and Optimization of a Fast Switching Hydraulic Step-Down Converter for Position and Speed Control

Marcos P. Nostrani
Mechanical Engineering Department, Federal University of Santa Catarina, Florianópolis, SC/Brazil

Alessio Galloni
Università degle studi di Modena e Reggio Emilia, Modena, Italy

Henrique Raduenz
Mechanical Engineering Department, Federal University of Santa Catarina, Florianópolis, SC/Brazil

Victor J. De Negri
Mechanical Engineering Department, Federal University of Santa Catarina, Florianópolis, SC/Brazil

Ladda ner artikelhttp://dx.doi.org/10.3384/ecp17144361

Ingår i: Proceedings of 15:th Scandinavian International Conference on Fluid Power, June 7-9, 2017, Linköping, Sweden

Linköping Electronic Conference Proceedings 144:36, s. 361-369

Visa mer +

Publicerad: 2017-12-20

ISBN: 978-91-7685-369-6

ISSN: 1650-3686 (tryckt), 1650-3740 (online)

Abstract

This paper presents a design process of a hydraulic step-down switching converter considering the load losses in the inertance tube and switched valve. A steady state analysis for the switching converter as well as nonlinear dynamic simulation results of a digital hydraulic position and speed control system are presented. The results using the steady state and dynamic models are validated by experimental results obtained using a hydraulic test bench able to apply different loads to the system. The results show that steady-state model provides a very good approach to perform the preliminary design of hydraulic switching converters. The impact of tube parameters in the system efficiency is also discussed.

Nyckelord

Digital hydraulics, Hydraulic step-down converter, PWM switched valve

Referenser

[1] DE NEGRI, V. J., WANG, P., JOHNSTON, D. N., PLUMMER, A., 2014. Behavioural prediction of hydraulic step-up switching converters. International Journal of Fluid Power. Vol 15, No. 1, pp. 1-9.

[2] LINJAMA, M., VILENIUS, M., 2005. Energy-Efficient Motion Control of a Digital Hydraulic Joint Actuator. Proceeding of the 6ht JFPS International Symposium on Fluid Power. Tsukuba, November 7-10.

[3] EGGERS, B., RAHMFELD, R., IVANTYSYNOVA, M., 2005. An energetic comparison between valveless and valve controlled active vibration damping for off-road vehicles. Proceedings of the 6th JFPS International Symposium on Fluid Power. Tsukuba.

[4] WILLKOMM, J., WANLER, M. & WEBER., J., 2014. Process-adapted control to maximize dynamics of displacement-variable pumps. Symposium on Fluid Power & Motion Control. Bath, United Kingdom. pp. 10-12.

[5] TEIXEIRA, P. L., VIANNA, W., PENTEADO, R. D., KRUS, P. & DE NEGRI., V. J., 2015. Pressure Modeling and Analysis of a Synchronized Hydraulic Press Brake with Variable-Speed Pump. Symposium on Fluid Power and Motion Control. Chicago, Illinois, USA.

[6] LINJAMA, M., LAAMANEN, A., VILENIUS, M., 2003. Is it time for digital hydraulics? The Eighth Scandinavian International Conference on Fluid Power, May 7–9, Tampere, Finland, pp. 347–366.

[7] BELAN, H, B., LOCATELI, C. C., ENDLER, L., PIERI, E. R. D. & DE NEGRI, V.J., 2014. Aumento da eficiência energética em sistemas hidráulicos utilizando hidráulica digital. XX Congresso Brasileiro de Automática, Belo Horizonte, Brazil, 20 - 24 Sept.

[8] BELAN, H. B., LOCATELI, C. C., LANTTO, B., KRUS. P. & DE NEGRI, V. J., 2015. Digital Secondary Control Architecture for Aircraft Application. The Seventh Workshop on Digital Fluid Power, February 26-27, Linz, Austria.

[9] LINJAMA, M., VILENIUS, M., 2008. DIGITAL HYDRAULICS – Towards Perfect Valve Technology. Technology. Digitalna Hidravlika, Ventil 14. 2. pp. 138-148.

[10] SCHEIDL, R.; KOGLER, H.; WINKLER, B., 2013. Hydraulic Switching Control - objectives, concepts, challenges and potential applications. Magazine of Hydraulics, Pneumatics, Tribology, Ecology, Sensorics, Mechatronics, n. 1, ISSN: 1453 - 7303.

[11] SELL, N. P., JOHNSTON, D. N., A. R. PLUMMER. & KUDZMA, S., 2013. Control of a fast switching valve for digital hydraulics. The 13th Scandinavian International Conference on Fluid Power, SICFP2013, June 3-5, Linköping, Sweden.

[12] BROWN, F. T., 1987. Switched reactance hydraulics: a new way to control fluid power. Proc. National Conference on Fluid Power. Chicago, USA, pp. 25-34.

[13] BROWN, F. T. TENTARELLI, S. C., RAMACHANDRAN, S. A., 1988. A hydraulic
rotary switched-inertance servo-transformer, Transactions of ASME: Journal of Dynamic Systems, Measurement, and Control. Vol. 110, pp.144-150.

[14] DE NEGRI, V.J., NOSTRANI, M.P., WANG P., JOHNSTON D.N., PLUMMER, A., 2015. Modelling and analysis of hydraulic step-down switching converters, International Journal of Fluid Power. Vol 16, No. 2, pp. 111-121.

[15] NOSTRANI, M. P., GALLONI, A., RADUENZ, H., DE NEGRI, V.J., 2016. Theoretical and experimental analysis of a hydraulic step-down switching converter for position and speed control. The Eighth Workshop on Digital Fluid Power. Tampere. Proceedings of DFP2016, 2016. pp. 1-19.

[16] SZPAK, R. Análise Teórico-Experimental das Pressões em Posicionadores Hidráulicos. 2008. Dissertação (Mestrado em Engenharia Mecânica) –Programa de Pós-graduação em Engenharia Mecânica, Universidade Federal de Santa Catarina, Florianópolis.

[17] WELLSTEAD, P. E., 2000. Introduction to Physical System Modelling. London: Ed. Academic Press Ltd., 244 p.

[18] FOX, R. W., MCDONALD, A. T., Pritchard, P. J., 2011. Introduction to Fluid Mechanics, 8th ed. Hoboken, NJ: Wily.

[19] GONZALEZ, F. E., DE NEGRI, V. J., SOARES, J. M. C., 2012. Analysis and Emulation of Actuating Forces on Wind Turbine Pitch Drives. 8th International Fluid Power Conference - 8. IFK, Aachen-Germany.

[20] DE NEGRI, V. J., RAMOS FILHO, J. R. B., SOUZA, A. D. C. de., 2008. A Design Method for Hydraulic Positioning Systems. 51th National Conference on Fluid Power (NCFP), Las Vegas, USA.

[21] MURARO, I., TEIXEIRA, P. L., DE NEGRI, V. J., 2013. Effect of proportional valves and cylinders on the behavior of hydraulic positioning systems. In: ASME/BATH Symposium on Fluid Power & Motion Control, Sarasota, FL. pp.1 – 9.

[22] GONZALEZ, F. E., 2012. Estudo das Forças Atuantes em Mecanismos de Regulação de Ângulo de Passo e Desenvolvimento de um Sistema Emulador de Cargas. Dissertação (Mestrado em Engenharia Mecânica)-Universidade Federal de Santa Catarina, Florianópolis,

[23] NOSTRANI, M. P., 2015. Estudo teóricoexperimental de um posicionador utilizando hidráulica digital de chaveamento rápido: estudo de caso em bancada de ensaios para turbinas eólicas. Dissertação (Programa de Pós Graduação em Engenharia Mecânica), Universidade Federal de Santa Catarina, Florianópolis.

[24] KRUS, P., WEDDFELT, K., PALMBERG, J.-O., 1994. Fast pipeline models for simulation of hydraulic systems. Journal of Dynamic Systems, Measurement, and Control. Vol.116. pp. 132-136. March.

[25] JOHNSTON, D.N., 2006. Efficient Methods for Numerical Modeling of Laminar Friction in Fluid Lines. Journal of Dynamic Systems, Measurement, and Control. December, Vol. 128. pp. 829-834. DOI: https://doi.org/10.1115/1.2361320,

[26] JOHNSTON, D.N., 2012. The transmission line method for modelling laminar flow of liquid in pipelines. Proc. IMechE Part I: Journal of Systems and Control Engineering, Vol. 226. pp. 586-597. DOI: https://doi.org/10.1177/0959651811430035.

Citeringar i Crossref