Analysis of Flow Angles and Flow Velocities in Spool Valves for the Calculation of Steady-State Flow Forces

Patrik Bordovsky
Institute for Fluid Power Drives and Controls (IFAS), RWTH Aachen University, Aachen, Germany

Hubertus Murrenhoff
Institute for Fluid Power Drives and Controls (IFAS), RWTH Aachen University, Aachen, Germany

Ladda ner artikelhttp://dx.doi.org/10.3384/ecp17144371

Ingår i: Proceedings of 15:th Scandinavian International Conference on Fluid Power, June 7-9, 2017, Linköping, Sweden

Linköping Electronic Conference Proceedings 144:37, s. 371-379

Visa mer +

Publicerad: 2017-12-20

ISBN: 978-91-7685-369-6

ISSN: 1650-3686 (tryckt), 1650-3740 (online)


A detailed analysis of the flow inside valves has become necessary for the optimisation of their static and dynamic performance. For this purpose, the contours of metering edges as well as the shapes of sleeves, respectively of valve blocks, can be modified, resulting in different flow patterns. In addition, the flow velocities and flow angles on defined areas inside valves are needed for the estimation of physical quantities such as flow rates, flow forces, etc.

Within this paper, measurements and CFD-simulations of a 2/2-way spool type test valve are analysed regarding flow angles and flow velocities including their distribution on the inlet and outlet areas. Different spool edge geometries are investigated in both flow directions. Furthermore, the impact of a chamfer and a fillet on a spool edge, on the flow angles and the flow velocities are analysed.

The analysis results show that the shape of a spool edge influences the flow angles and the flow velocities. Both flow variables are significantly affected by the direction of the fluid flow through the valve. Moreover, considering the same inlet area, an increasing chamfer width, respectively an increasing fillet radius, result both in lower inlet and outlet flow angles.


Flow Angle, Flow Velocity, Steady-State Flow Force, Spool Valve


[1] Von Mises, R.: Berechnung von Ausfluss- und Überfallzahlen. In: Zeitschrift des Vereins Deutscher Ingenieure, 1917.

[2] Backé, W., Tatar, H.: Untersuchung des Einflusses von Störkräften auf den Schaltvogang bei Wegeventilen der Hydraulik. Forschungsberichte des Landes Nordrhein-Westfalen, Opladen: Westdeutscher Verlag, 1975.

[3] Murrenhoff, H.: Grundlagen der Fluidtechnik. Teil 1: Hydraulik. Umdruck zur Vorlesung. 8. Aufl. Herzogenrath: Shaker (Reihe Fluidtechnik U3), 2016.

[4] Ye, Yi et al.: Effects of groove shape of notch on the flow characteristics of spool valve. In: Energy Conversion and Management 86, p. 1091–1101, 2014.

[5] Schrank, K., and Murrenhoff, H.: Beschreibung der Strömungskraft in Längsschieberventilen mittels Impulserhaltung. In: O+P Fluidtechnik 4, 2013.

[6] Tanaka, K. et al.: Steady and Unsteady Flow Force acting on a Spool Valve. In: Fluid Power and Motion Control, 2012.

[7] Lugowski, J.: Steady-State Flow Force Compensation in a Hydraulic Valve. Purdue University, 2013.

[8] Yuan, Q., Li, P.Y.: Using Steady Flow Force for Unstable Valve Design: Modeling and Experiments. In: J. Dyn. Sys., Meas., Control, 127(3), p. 451, 2005.

[9] Okungbowa, N., et al.: Determining the Steady State Flow Forces in a Rim Spool Valve using CFD Analysis. In: PTMC, 2005.

[10] Kipping, M.: Experimentelle Untersuchungen und numerische Berechnungen zur Innenströmung in Schieberventilen der Ölhydraulik. Technische Hochschule Darmstadt, Dissertation, 1997.

[11] Bordovsky, P., Murrenhoff, H.: Investigation of Steady-State Flow Forces in Spool Valves of Different Geometries and at Different Oil Temperatures With the Help of Measurements and CFD Simulations. In: Proceedings of BATH/ASME 2016 Symposium on Fluid Power and Motion Control, 2016.

[12] Del Vescovo, G.; Lippolis, A.: Three-Dimensional Analysis of Flow Forces on Directional Control Valves. In: International Journal of Fluid Power 4 (2), 2003

[13] Borghi, M. et al.: Influence of Notch Shape and umber of Notches on the Metering Characteristics of Hydraulic Spool Valves. In: International Journal of Fluid Power, 6(2), pp. 5–18, 2005.

[14] Merritt, H.E.: Hydraulic Control Systems. New York: John Wiley & Sons Inc, 1967.

Citeringar i Crossref