Mapping FHIR Resources to Ontology for DDI reasoning

Raees Abbas
Department of Information and Communication Technology, University of Agder, Grimstad, Norway

Islam Fathi Hussein Hussein Al Khaldi
Department of Information and Communication Technology, University of Agder, Grimstad, Norway

Getinet Ayele
Department of Information and Communication Technology, University of Agder, Grimstad, Norway

Jan Pettersen Nytun
Department of Information and Communication Technology, University of Agder, Grimstad, Norway

Ladda ner artikel

Ingår i: Proceedings from The 15th Scandinavian Conference on Health Informatics 2017 Kristiansand, Norway, August 29–30, 2017

Linköping Electronic Conference Proceedings 145:2, s. 9-13

Visa mer +

Publicerad: 2018-01-04

ISBN: 978-91-7685-364-1

ISSN: 1650-3686 (tryckt), 1650-3740 (online)


Fast Healthcare Interoperability Resources (FHIR) specifications are used to exchange clinical and health related information between different systems. There is unfinished on-going work to represent FHIR resources using Semantic Web technology to support semantic interoperability. This same technology would then also fit applications doing reasoning. We utilize and customize the FHIR unofficial draft ontology for doing drug-drug interactions reasoning. We give one use case of such reasoning based on family history; this kind of reasoning may extend the capabilities given by Forskrivnings- og ekspedisjonsstøtte (FEST) alone. We achieve this by setting up a FHIR server and making a FHIR client that store drug and patient information to the server; we then later retrieve some of this information, translated it into Web Ontology Language (OWL) based ontology, do drug-drug interaction (DDI) reasoning exposing potential health risks.


FHIR Ontology, DDI reasoning, Semantic Web, SPARQL


[1] Abbas, R. 2017, Ontological Modelling of FEST with support for DDI Reasoning. MSc Information and communication technology, University of Agder, Norway.

[2] Anthony, M., Prud’hommeaux E. 2016, FHIR OWL Ontology: Unofficial Draft [Online]. Available: http://w3c.github.io/hcls-fhirrdf/spec/ontology.html [Accessed May 4 2017].

[3] Apache. 2011, Fuseki: serving RDF data over HTTP [Online]. Available:
https://jena.apache.org/documentation/serving_data/ [Accessed May 5 2017].

[4] Bechhofer, S. 2009, OWL: Web ontology language. Encyclopedia of Database Systems. Springer.

[5] Benson, T. 2016, Principles of Health Interoperability, Springer.

[6] Beredimas, N., Kilintzis, V., Chouvarda, I. & Maglaveras, N. 2015, A reusable ontology for primitive and complex HL7 FHIR data types. Engineering in Medicine and Biology Society (EMBC), 37th Annual International Conference of the IEEE, 2015. IEEE, 2547-2550.

[7] FHIR-HL7. 2017, Resource Medication – Content [Online]. Available: https://www.hl7.org/fhir/medication.html [Accessed May 5 2017].

[8] Glimm, B., Horrocks, I., Motik, B., Stoilos, G. & Wang, Z. 2014, HermiT: an OWL 2 reasoner. Journal of Automated Reasoning, 53, 245-269.

[9] GRIEVE, G. 2017, FHIR Release 3 Posted [Online]. Available: https://onfhir.hl7.org/2017/03/22/fhirrelease-3-posted/ [Accessed May 5 2017].

[10] Herrero Zazo, M., Hastings, J., Segura BedmarR, I., Croset, S., Martinez, P. & Steinbeck, C. 2015-04-23. An ontology for drug-drug interactions. International Workshop on Semantic Web Applications and Tools for Life Sciences (SWAT4LS), 2013 December, 11-12 2014 Edinburgh, UK. CEUR, 1-15.

[11] Herrero-Zazo, M., Segura-Bedmar, I., Hastings, J. & Martinez, P. 2015, DINTO: using OWL ontologies and SWRL rules to infer drug–drug interactions and their mechanisms. Journal of chemical information and modeling, 55, 1698-1707.

[12] HL7. 2017. About HL7 International [Online]. Available: http://www.hl7.org/ [Accessed May 5 2017].

[13] Horrocks, I., Patel-Schneider, P. F., Boley, H., Tabet, S., GrosofF, B. & Dean, M. 2004. SWRL: A semantic web rule language combining OWL and RuleML. W3C Member submission, 21, 79.

[14] Kasthurirathne, S. N., Mamlin, B., Kumara, H., Grieve, G. & Biondich, P. 2015, Enabling better interoperability for healthcare: lessons in developing a standards based application programing interface for electronic medical record systems. Journal of medical systems, 39, 182.

[15] Legemiddelverk, S. 2016, Fest Implementation Guidlines [Online]. Available:
https://legemiddelverket.no/Documents/Andretemaer/FEST/Hvordan bruke FEST/Implementationguide FEST v2.2.pdf [Accessed May 5 2017].

[16] Mcbride, B. 2002, Jena: A semantic web toolkit. IEEE Internet computing, 6, 55-59.

[17] Musen, M. A. 2015, The Protégé project: A look back and a look forward. AI matters, 1, 4-12.

[18] Oemig, F. & Snelick, R. 2017, Healthcare Interoperability Standards Compliance Handbook: Conformance and Testing of Healthcare Data Exchange Standards, Springer.

[19] Tari, L., Anwar, S., Liang, S., Cai, J. & Baral, C. 2010, Discovering drug–drug interactions: a text-mining and reasoning approach based on properties of drug metabolism. Bioinformatics, 26, i547-i553.

[20] UHN. 2017, HAPI-FHIR. FHIR made simple. [Online]. Available: http://jamesagnew.github.io/hapi-fhir/ [Accessed May 5 2017].

[21] W3C. 2013, SPARQL query language for RDF [Online]. Available: https://www.w3.org/TR/rdf-sparql-query/ [Accessed May 4 2017].

[22] W3C. 2014, RDF 1.1 concepts and abstract syntax [Online]. Available: https://www.w3.org/TR/rdf11-concepts/ [Accessed May 5 2017].

[23] Whetzel, P. L., Noy, N. F., Shah, N. H., Alexander, P. R., Nyulas, C., Tudorache, T. & Musen, M. A. 2011, BioPortal: enhanced functionality via new Web services from the National Center for Biomedical Ontology to access and use ontologies in software applications. Nucleic acids research, 39, W541-W545.

[24] Yoshikawa, S., Satou, K. & Konagaya, A. 2004, Drug interaction ontology (DIO) for inferences of possible drug-drug interactions. Medinfo, 11, 454-458.

Citeringar i Crossref