Predicting cost-effectiveness of telehealthcare to patients with COPD: A feasibility study based on data from the TeleCare North cluster-randomized trial

Flemming Witt Udsen
Department of Health Science & Technology, Aalborg University, Aalborg, Denmark

Ole Hejlesen
Department of Health Science & Technology, Aalborg University, Aalborg, Denmark

Ladda ner artikel

Ingår i: Proceedings from The 16th Scandinavian Conference on Health Informatics 2018, Aalborg, Denmark August 28–29, 2018

Linköping Electronic Conference Proceedings 151:4, s. 16-22

Visa mer +

Publicerad: 2018-08-24

ISBN: 978-91-7685-213-2

ISSN: 1650-3686 (tryckt), 1650-3740 (online)


International results have recently questioned the value of providing telehealthcare to all COPD patients. Results from the Danish TeleCare North trial nuanced the debate by concluding that telehealthcare would most likely only be cost-effective for patients in a subgroup of severe COPD. Machine-learning methods have been suggested as a strategy to target telehealthcare even better than clinical subgroups. Data from the TeleCare North trial was used to fit classification models in order to explore this feasibility. Three models were applied: a simple decision tree, logistic regression and a linear support vector machine. Results indicate that classification methods can be used to predict patient-level cost-effectiveness with a relatively high precision. With these methods, it is feasible to target telehealthcare even better in order to maximize survival and health-related quality of life while not overusing scarce health resources as argued by health economists and clinical advocates of rational medicine.


Pattern Recognition, Automated/classification; Cost-Benefit Analysis, Telemedicine; Pulmonary Disease, Chronic Obstructive, Denmark.


[1] Halbert RJ, Natoli JL, Gano A, Badamgarav E, Buist AS, Mannino DM. Global burden of COPD: systematic review and meta-analysis. Eur Respir J [Internet]. 2006;28(3):523–32. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16611654

[2] Mannino DM, Buist AS. Global burden of COPD: risk factors, prevalence, and future trends. Lancet [Internet]. 2007;370(9589):765–73. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17765526

[3] WHO. Chronic obstructive pulmonary disease (COPD) [Internet]. Fact sheet 315. 2012. Available from: http://www.who.int/mediacentre/factsheets/fs315/en/index.html

[4] European COPD Coalition. Prevalence of COPD in EU [Internet]. 2014. Available from: http://www.copdcoalition.eu/about-copd/prevalence

[5] Danish Lung Association. COPD in Denmark [Internet]. 2012. Available from: www.lunge.dk

[6] Hansen JG, Pedersen L, Overvad K, Omland Ø, Jensen HK, Sørensen HT. The Prevalence of chronic obstructive pulmonary disease among Danes aged 45-84 years: population-based study. COPD [Internet]. 2008;5(6):347–52. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19353348

[7] Flachs EM, Eriksen L, Koch MB. The disease burden in Denmark. 2015.

[8] National Institute of Public Health. The Public Health Report, Denmark. 2007.

[9] McLean S, Nurmatov U, Liu JLY, Pagliari C, Car J, Sheikh A. Telehealthcare for chronic obstructive pulmonary disease: Cochrane Review and meta-analysis. Br J Gen Pract [Internet]. 2012;62(604):e739–49. Available from: http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L365948923

[10] Steventon A., Bardsley M, Billings J, Dixon J, Doll H, Hirani S, et al. Effect of telehealth on use of secondary care and mortality: findings from the Whole System Demonstrator cluster randomised trial. Bmj [Internet]. 2012 Jun 21;344(jun21 3):e3874–e3874. Available from: http://www.bmj.com/cgi/doi/10.1136/bmj.e3874

[11] Wootton R. Twenty years of telemedicine in chronic disease management--an evidence synthesis. J Telemed Telecare [Internet]. 2012;18(4):211–20. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3366107&tool=pmcentrez&rendertype=abstract

[12] Drummond M, SculpherJ. M, Glaxton K, Stoddart L. G, Torrance W. G. Methods for the Economic Evaluation of Health Care Programmes. 4th edition. Oxford University Press; 2015.

[13] Haesum LKE, Soerensen N, Dinesen B, Nielsen C, Grann O, Hejlesen O, et al. Cost-utility analysis of a telerehabilitation program: A case study of COPD patients. Telemed e-Health [Internet]. 2012;18(9):688–92. Available from: http://www.scopus.com/inward/record.url?eid=2-s2.0-84869057985&partnerID=40&md5=87200bfb992018c29819b0f75c0d60cf

[14] de Toledo P, Jiménez S, del Pozo F, Roca J, Alonso A, Hernandez C. Telemedicine experience for chronic care in COPD. IEEE Trans Inf Technol Biomed [Internet]. 2006 Jul;10(3):567–73. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16871726

[15] Vitacca M, Assoni G, Pizzocaro P, Guerra A, Marchina L, Scalvini S, et al. A pilot study of nurse-led, home monitoring for patients with chronic respiratory failure and with mechanical ventilation assistance. J Telemed Telecare [Internet]. 2006;12(7):337–42. Available from: http://www.scopus.com/inward/record.url?eid=2-s2.0-39049188481&partnerID=40&md5=cb0d21f36d8f7c730d9c5d2ff6b08297

[16] Koff PB, Jones RH, Cashman JM, Voelkel NF, Vandivier RW. Proactive integrated care improves quality of life in patients with COPD (Provisional abstract). Eur Respir J [Internet]. 2009 May [cited 2013 Sep 6];33(5):1031–8. Available from: http://onlinelibrary.wiley.com/o/cochrane/cleed/articles/NHSEED-22009102080/frame.html

[17] Pare G, Poba-Nzaou P, Sicotte C, Beaupre A, Lefrancois E, Nault D, et al. Comparing the costs of home telemonitoring and usual care of chronic obstructive pulmonary disease patients: A randomized controlled trial. Eur Res Telemed [Internet]. 2013;2(2):35–47. Available from: http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L52635611

[18] Henderson C, Knapp M, Fernández J, Beecham J, Hirani S, Cartwright M, et al. Cost effectiveness of telehealth for patients with long term conditions (Whole Systems Demonstrator telehealth questionnaire study): nested economic evaluation in a pragmatic, cluster randomized controlled trial. BMJ. 2013;346.

[19] Stoddart A, van der Pol M, Pinnock H, Hanley J, McCloughan L, Todd A, et al. Telemonitoring for chronic obstructive pulmonary disease: a cost and costutility analysis of a randomised controlled trial. J Telemed Telecare [Internet]. 2015;21(2):108–18. Available from: http://jtt.sagepub.com/lookup/doi/10.1177/1357633X14566574

[20] McDowell JE, McClean S, FitzGibbon F, Tate S. A randomised clinical trial of the effectiveness of homebased health care with telemonitoring in patients with COPD. J Telemed Telecare [Internet]. 2015;21(2):80–7. Available from: http://jtt.sagepub.com.ez.statsbiblioteket.dk:2048/content/21/2/80.full


[21] Udsen F, Lilholt P, Hejlesen O, Ehlers L. Costeffectiveness of telehealthcare to patients with chronic obstructive pulmonary disease: Results from the Danish “TeleCare North” cluster-randomized trial. BMJ Open. 2017;7(5).

[22] Udsen FW, Lilholt PH, Hejlesen OK, Ehlers L. Subgroup analysis of telehealthcare to patients with chronic obstructive pulmonary disease: The case of the Danish “TeleCare North” cluster-randomized trial. Clin Outcomes Res. 2017;9:391–401.

[23] Dixon P, Hollinghurst S, Edwards L, Thoms C, Foster A, Davies B, et al. Cost-effectiveness of telehealth for patients with depression: evidence from the Healthlines randomised controlled trial. BJPsych Open [Internet]. 2016;2:262–269. Available from: http://bmjopen.bmj.com/lookup/doi/10.1136/bmjopen-2016-012355

[24] Dixon P, Hollinghurst S, Edwards L, Thomas C, Gaunt D, Foster A, et al. Cost-effectiveness of telehealth for patients with raised cardiovascular disease risk: evidence from the Healthlines randomised controlled trial. BMJ Open [Internet]. 2016;6(9):e012355. Available from: http://bmjopen.bmj.com/lookup/doi/10.1136/bmjopen-2016-012355

[25] Udsen F. Health Economic Evaluation of Telehealthcare: Can we include “why” and “under what circumstances” telehealthcare is cost-effective in health economic evaluation? [Internet]. Aalborg: Aalborg University Press; 2016. Available from: http://aauforlag.dk/Shop/phd-udgivelse/phd-byflemming-witt-udsen.aspx

[26] Vitacca M, Montini A, Comini L. How will telemedicine change clinical practice in chronic obstructive pulmonary disease? Ther Adv Respir Dis [Internet]. 2018;12:175346581875477. Available from: http://journals.sagepub.com/doi/10.1177/1753465818754778

[27] Udsen F, Lilholt P, Hejlesen O, Ehlers L. Effectiveness and cost-effectiveness of telehealthcare for chronic obstructive pulmonary disease: study protocol for the Danish “TeleCare North” pragmatic cluster-randomized trial. Trials. 2014;15(178).

[28] Brazier J, Ratcliffe J, Salomon JA, Tsuchiya A. Measuring and Valuing Health Benefits for Economic Valuation. 1st ed. New York: Oxford University Press; 2009. 344 p.

[29] The State Serum Institute. The Danish Register of Causes of Death. 2014.

[30] Reenen M van, Oppe M. EQ-5D-3L User Guide. EuroQol Res Found. 2015;(April):22.

[31] Sørensen J, Davidsen M, Gudex C, Pedersen KM, Brønnum-Hansen H. Danish EQ-5D population norms. Scand J Public Health. 2009;37:467–74.

[32] Wittrup-Jensen K, Lauridsen J, Gudex C, Pedersen K. Generation of a Danish TTO value set for EQ-5D health states. Scand J Public Health. 2009;37:459–66.

[33] Lynge E, Sandegaard JL, Rebolj M. The Danish National Patient Register. Scand J Public Health. 2011;39(7 Suppl):30–3.

[34] The State Serum Institute. National Health Insurance Service Register [Internet]. 2014. Available from: http://www.ssi.dk/Sundhedsdataogit/Registre og kliniskedatabaser/De nationalesundhedsregistre/Sundhedsokonomifinansiering/Sygesikringsregister.aspx

[35] Wallach Kildemoes H, Toft Sorensen H, Hallas J. The Danish National Prescription Registry. Scand J Public Health. 2011;39(7 Suppl):38–41.

[36] Ware J, Sherbourne C. The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. Med Care. 1992;30(6):473–83.

[37] Pedersen CB, Gøtzsche H, Møller JO, Mortensen PB. The Danish Civil Registration System. A cohort of eight million persons. Dan Med Bull. 2006;53(4):441–9.

[38] Guide P, Copd TO. Global Initiative for Chronic Obstructive Lung A Guide for Health Care Professionals Global Initiative for Chronic Obstructive Disease. Glob Initiat chronic Obstr lung Dis. 2010;22(4):1–30.

[39] Manca A, Hawkins N, Sculpher MJ. Estimating mean QALYs in trial-based cost-effectiveness analysis: The importance of controlling for baseline utility. Health Econ. 2005;14(5):487–96.

[40] Drummond M, Sculpher M, Claxton K, Stoddart G, Torrance G. Methods for the Economic Evaluation of Health Care Programmes. Fourth edi. Oxford University Press; 2015.

[41] Glick H, Doshi J, Sonnad S, Polsky D. Economic Evaluation in Clinical Trials. Oxford University Press; 2007.

[42] Faria R, Gomes M, Epstein D, White IR. A guide to handling missing data in cost-effectiveness analysis conducted within randomised controlled trials. Pharmacoeconomics [Internet]. 2014;32(12):1157–70. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4244574&tool=pmcentrez&rendertype=abstract

[43] Sterne JAC, White IR, Carlin JB, Spratt M, Royston P, Kenward MG, et al. Multiple imputation for missing data in epidemiological and clinical research : potential and pitfalls. 2009;339(July):157–60.

[44] Motwani M, Dey D, Berman DS, Germano G, Achenbach S, Al-Mallah MH, et al. Machine learning for prediction of all-cause mortality in patients with suspected coronary artery disease: A 5-year multicenter prospective registry analysis. Eur Heart J. 2017;38(7):500–7.

[45] Stausholm MN, Egmose A, Dahl SC, Lilholt PH, Cichosz SL, Hejlesen OK. Stratification of telehealthcare for patients with chronic obstructive pulmonary disease using a predictive algorithm as decision support: A pilot study. J Telemed Telecare [Internet]. 2017;23(3):410–5. Available from: http://journals.sagepub.com/doi/10.1177/1357633X16644129

[46] Bertocco L, Haddad DP. Machine Learning in the Prediction of Costs Open for Liver Transplantation. 2017;25:335–43.

[47] Finansministeriet. Aftaler om den kommunale og regionale økonomi for 2016 [Internet]. 2015. 90 p. Available from: http://www.fm.dk/publikationer/2007/aftaler-om-denkommunale-og-regionale-oekonomi-for-2008/download/~/media/Files/Publikationer/2008/Download/Aftale_om_den_kommunale_og_regionale_okonomi_2008_endelig_version.ashx

[48] Yoo I, Alafaireet P, Marinov M, Pena-Hernandez K, Gopidi R, Chang JF, et al. Data mining in healthcare and biomedicine: A survey of the literature. J Med Syst. 2012;36(4):2431–48.

[49] Vijeta S,??Ajai K, Lakshmi P, Ganesh K, Anuradha L. Malaria Outbreak Prediction Model Using Machine Learning. Int J Adv Res Comput Eng Technol [Internet]. 2015;4(12):4415–9. Available from: http://ijarcet.org/wp-content/uploads/IJARCET-VOL-4-ISSUE-12-4415-4419.pdf

[50] Guncar G, Kukar M, Notar M, Brvar M, Cernelc P, Notar M, et al. An application of machine learning to haematological diagnosis. Sci Rep. 2018;8(1):1–12.

[51] Gomes M, Ng ES-W, Grieve R, Nixon R, Carpenter J, Thompson SG. Developing appropriate methods for costeffectiveness analysis of cluster randomized trials. Med Decis Making [Internet]. 2012 [cited 2014 Oct 16];32(2):350–61.

[52] Rabe-Hesketh S, Skrondal A. Multilevel and Longitudinal Modeling Using Stata. Volume I: Continouos Responses. Third edit. Texas: Stata Press; 2012.

Citeringar i Crossref