Modelica language – a promising tool for publishing and sharing biomedical models

Jirí Kofránek
Department of Pathophysiology, 1st Faculty of Medicine, Charles University, Czechia

Filip Ježek
Department of Pathophysiology, 1st Faculty of Medicine, Charles University, Czechia

Marek Mateják
Department of Pathophysiology, 1st Faculty of Medicine, Charles University, Czechia

Ladda ner artikelhttp://dx.doi.org/10.3384/ecp18154196

Ingår i: Proceedings of The American Modelica Conference 2018, October 9-10, Somberg Conference Center, Cambridge MA, USA

Linköping Electronic Conference Proceedings 154:21, s. 196-205

Visa mer +

Publicerad: 2019-02-26

ISBN: 978-91-7685-148-7

ISSN: 1650-3686 (tryckt), 1650-3740 (online)


Current biomedical models are so extensive that their description (and reproducibility) requires more than a set of equations. Journal papers are thus frequently accompanied by electronic enclosures with detailed model descriptions, or even better, with a complete model source code. Specific electronic archives associated with specific languages and publicly accessible simulation platforms for the creation and archiving of biomedical models have been set up, however each of them has some disadvantage and an agreement on a common language for model sharing is missing. This paper reviews the usage of the languages for physiological modeling and discusses the advantages of the Modelica language in the area of physiological simulations.


Physiology, Integrative models, Physiome project, Biomedical models archiving, Biomedical models publishing


Bassingthwaighte, J. B. (2000). Strategies for the physiome project. Annals of Biomedical Engineering, 28(8), 1043–1058.

Beard, D. A., Neal, M. L., Tabesh-Saleki, N., Thompson, C. T., Bassingthwaighte, J. B., Shimoyama, M., & Carlson, B. E. (2012). Multiscale modeling and data integration in the virtual physiological rat project. Annals of Biomedical Engineering, 40(11), 2365–2378.

Butterworth, E., Jardine, B. E., Raymond, G. M., Neal, M. L., & Bassingthwaighte, J. B. (2013). JSim, an open-source modeling system for data analysis. F1000Research, 2, 288.

Coleman, T. G., & Summers, R. L. (1997). Using mathematical models to better understand integrative physiology. Journal of Physiology and Biochemistry, 53, 45–46.

Cooling, M. T., & Hunter, P. (2015). The CellML Metadata Framework 2.0 Specification. Journal of Integrative Bioinformatics, 12(2), 260.

Cuellar, A. A., Lloyd, C. M., Nielsen, P. F., Bullivant, D. P., Nickerson, D. P., & Hunter, P. J. (2003). An Overview of CellML 1.1, a Biological Model Description Language. Simulation, 79(12), 740–747.

de Canete, J. F. (2015). Object-Oriented Programming for Modeling and Simulation of Systems in Physiology. International Journal of Medical, Health, Biomedical, Bioengineering and Pharmaceutical Engineering, 9(4), 343–346.

de Canete, J. F., Saz-Orozco, P. del, Moreno-Boza, D., & Duran-Venegas, E. (2013). Object-oriented modeling and simulation of the closed loop cardiovascular system by using SIMSCAPE. Computers in Biology and Medicine, 43(4), 323–333.

Garny, A., Nickerson, D. P., Cooper, J., Weber dos Santos, R., Miller, A. K., McKeever, S., … Hunter, P. J. (2008). CellML and associated tools and techniques. Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences, 366(1878), 3017–3043.

Gesenhues, J., Hein, M., Ketelhut, M., Habigt, M., Rüschen, D., Mechelinck, M., … Abel, D. (2017). Benefits of object-oriented models and ModeliChart: modern tools and methods for the interdisciplinary research on smart biomedical technology. Biomedizinische Technik. Biomedical Engineering, 62(2), 111–121.

Guyton, A. C., Coleman, T. G., & Granger, H. J. (1972). Circulation: overall regulation. Annual Review of Physiology, 34, 13–46.

Guyton, A. C., Jones, C. E., & Coleman, T. G. (1973). Circulatory physiology: cardiac output and its regulation. Philadelphia: WB Saunders, 1973.

Guyton, A. C., Taylor, A. E., & Granger, H. J. (1975). Circulatory Physiology II. Dynamics and control of the body fluids (Vol. 2). Saunders.

Heinke, S., Pereira, C., Leonhardt, S., & Walter, M. (2015). Modeling a healthy and a person with heart failure conditions using the object-oriented modeling environment Dymola. Medical & Biological Engineering & Computing, 53(10), 1049–1068.

Hester, R., Brown, A., Husband, L., & Iliescu, R. (2011). HumMod: a modeling environment for the simulation of integrative human physiology. Frontiers in Physiology. Retrieved from http://journal.frontiersin.org/ article/10.3389/fphys.2011.00012

Hester, R. L., Coleman, T., & Summers, R. (2008). A multilevel open source integrative model of human physiology. The FASEB Journal, 22(1 Supplement), 756.8–756.8.

Hunter, P. (2016). The Virtual Physiological Human: The Physiome Project Aims to Develop Reproducible, Multiscale Models for Clinical Practice. IEEE Pulse, 7(4), 36–42.

Hunter, P. J., Crampin, E. J., & Nielsen, P. M. F. (2008). Bioinformatics, multiscale modeling and the IUPS Physiome Project. Briefings in Bioinformatics, 9(4), 333–343.

Hunter, P. J., Li, W. W., McCulloch, A. D., & Noble, D. (2006). Multiscale modeling: physiome project standards, tools, and databases. Computer, 39(11), 48–54.

Hunter, P., Robbins, P., & Noble, D. (2002). The IUPS human Physiome Project. Pflugers Archiv: European Journal of Physiology, 445(1), 1–9.

Ježek, F., Kulhánek, T., Kalecký, K., & Kofránek, J. (2017). Lumped models of the cardiovascular system of various complexity. Biocybernetics and Biomedical Engineering, 37(4), 666–678.

Kofránek, J., Mateják, M., & Privitzer, P. (2011). Complex model of integrated physiological systems - a theoretical basis for medical training simulators. Mefanet Report, 4, 22–59.

Kofránek, J., Matejak, M., & Privitzer, P. (2011). Hummod-large scale physiological models in modelica. In Proceedings of the 8th International Modelica Conference; March 20th-22nd; Technical Univeristy; Dresden; Germany (pp. 713–724). Linköping University Electronic Press.

Kofránek, J., & Rusz, J. (2010). Restoration of Guyton’s diagram for regulation of the circulation as a basis for quantitative physiological model development. Physiological Research, 59(6), 897.

Lloyd, C. M., Lawson, J. R., Hunter, P. J., & Nielsen, P. F. (2008). The CellML Model Repository. Bioinformatics , 24(18), 2122–2123.

Maksuti, E., Bjällmark, A., & Broomé, M. (2015). Modelling the heart with the atrioventricular plane as a piston unit. Medical Engineering & Physics, 37(1), 87–92.

Mangourova, V., Ringwood, J., & Van Vliet, B. (2011). Graphical simulation environments for modelling and simulation of integrative physiology. Computer Methods and Programs in Biomedicine, 102(3), 295–304.

Mateják, M., & Kofránek, J. (2015). Physiomodel – an integrative physiology in Modelica. In 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 1464–1467).

Mateják, M., Kulhánek, T., Šilar, J., Privitzer, P., Ježek, F., & Kofránek, J. (2014). Physiolibrary-Modelica library for physiology. In Proceedings of the 10 th International Modelica Conference; March 10-12; 2014; Lund; Sweden (pp. 499–505). Linköping University Electronic Press.

Matejak, M., Tribula, M., Ježek, F., & Kofáanek, J. (2015). Free Modelica Library for Chemical and Electrochemical Processes. In Proceedings of the 11th International Modelica Conference, Versailles, France, September 21-23, 2015 (pp. 359–366). Linköping University Electronic Press.

Ngo, C., Dahlmanns, S., Vollmer, T., Misgeld, B., & Leonhardt, S. (2018). An object-oriented computational model to study cardiopulmonary hemodynamic interactions in humans. Computer Methods and Programs in Biomedicine, 159, 167–183.

Nielsen, T. A., Nilsson, H., & Matheson, T. (2012). A formal mathematical framework for physiological observations, experiments and analyses. Journal of the Royal Society Interface, 9(70), 1040–1050.

Omholt, S. W., & Hunter, P. J. (2016). The Human Physiome: a necessary key for the creative destruction of medicine. Interface Focus, 6(2), 20160003.

Reinhardt, H. W., & Seeliger, E. (2000). Toward an Integrative Concept of Control of Total Body Sodium. News in Physiological Sciences: An International Journal of Physiology Produced Jointly by the International Union of Physiological Sciences and the American Physiological Society, 15, 319–325.

Wu, K., Chen, J., Pruett, W. A., & Hester, R. L. (2013). Hummod browser: An exploratory visualization tool for the analysis of whole-body physiology simulation data. In 2013 IEEE Symposium on Biological Data Visualization (BioVis) (pp.97–104). ieeexplore.ieee.org.

Citeringar i Crossref