Exergy Analysis of Thermo-Fluid Energy Conversion Systems in Model-Based Design Environment

Daniel Bender
Institute of System Dynamics and Control, DLR German Aerospace Center, Germany

Ladda ner artikelhttp://dx.doi.org/10.3384/ecp1815456

Ingår i: Proceedings of The American Modelica Conference 2018, October 9-10, Somberg Conference Center, Cambridge MA, USA

Linköping Electronic Conference Proceedings 154:6, s. 56-66

Visa mer +

Publicerad: 2019-02-26

ISBN: 978-91-7685-148-7

ISSN: 1650-3686 (tryckt), 1650-3740 (online)


Exergy-based analysis has been emerging as a powerful tool for the evaluation of energy intensive systems. Exergy is the maximum theoretical useful work obtainable as the system is brought into complete thermodynamic equilibrium with the thermodynamic environment. Besides the thermodynamic efficiency, both the real thermodynamic value of an energy carrier and the real thermodynamic inefficiencies within a system can be identified. Environmental control systems (ECS) of aircraft as highly interacting systems are an ideal candidate for exergy-based analysis. The design task on architectural level is currently performed using model-based design methods. However, if such systems are evaluated from an exergetic point of view, the analysis is done subsequent of the model-based simulations using rudimentary tools. This work presents a way how exergy-based methods can be integrated into the model-based design environment of Modelica with focus on generic compatibility.


exergy analysis, thermo-fluid systems, energy conversion systems, aircraft ECS


Ansys. Ansys, 2018. URL https://www.ansys.com/.

aspentech. Aspen plus, 2018. URL https://www.aspentech.com/products/engineering/aspen-plus.

Adrian Bejan, George Tsatsaronis, and Michael J. Moran. Thermal design and optimization. A Wiley-Interscience publication. Wiley, New York, 1996. ISBN 978-0-471-58467-4. URL http://www.loc.gov/catdir/description/wiley032/95012071.html.

Daniel Bender. Desa - optimization of variable structure modelica models using custom annotations. In Francesco Casella and Dirk Zimmer, editors, Proceedings of the 7th International Workshop on Equation-Based Object-Oriented Mod eling Languages and Tools - EOOLT ’16, pages 45–54, New York, New York, USA, 2016. ACM Press. ISBN 9781450342025. doi:10.1145/2904081.2904088.

Daniel Bender. Integration of exergy analysis into model-based design and evaluation of aircraft environmental control systems. Energy, 137:739–751, 2017. ISSN 0360-5442. doi:10.1016/j.energy.2017.05.182.

Hilding Elmqvist, Hubertus Tummescheit, and Martin Otter. Object-oriented modeling of thermo-fluid systems. In The Modelica Association, editor, Proceedings of the 3rd International Modelica Conference, pages 269–286, 2003.

F-Chart. Ees, 2018. URL http://www.fchart.com/ees/.

Stefan Golle, Ullrich Hesse, Enrico Klausner, Frank Klimpel, Hans Brunswig, and Mario Raddatz. Betriebsphasenabhängig steuerbare flugzeugklimaanlage und verfahren zum betreiben einer derartigen flugzeugklimaanlage, 2016.

P. Grassmann. Zur allgemeinen definition des wirkungsgrades. Chemie Ingenieur Technik - CIT, 22(4):77–80, 1950. doi:10.1002/cite.330220402.

Matthias Hellerer and Fabian Buse. Compile-time dynamic and recursive data structures in modelica. In Dirk Zimmer and Bernhard Bachmann, editors, Proceedings of the 8th International Workshop on Equation-Based Object-Oriented Modeling Languages and Tools - EOOLT ’17, pages 81–86, New York, New York, USA, 2017. ACM Press. ISBN 9781450363730. doi:10.1145/3158191.3158205.

Andrea Lazzaretto and George Tsatsaronis. Speco: A systematic and general methodology for calculating efficiencies and costs in thermal systems. Energy, 31(8-9):1257–1289, 2006. ISSN 0360-5442. doi:10.1016/j.energy.2005.03.011.

Dirk Limperich, Marco Braun, Kathrin Prölß, and Gerhard Schmitz. System simulation of automative refrigeration cycles. Proceedings of the 4th International Modelica Conference, 2005.

Andreas Pfeiffer. Optimization library for interactive multicriteria optimization tasks. In: Proceedings of the 9th International Modelica Conference, 2012.

Roozbeh Sanghi, Jahangiri Pooyan, Alexander Thamm, Rita Streblow, and Dirk Müller. Dynamic exergy analysis - part i: Modelica-based tool development. Building Simulation and Optimization Conference, 2014.

Michael Sielemann, Tim Giese, Bettina Oehler, and Martin Otter. A flexible toolkit for the design of environmental control system architectures. In: Proceedings of the First CEAS European Air and Space Conference, 2007. Berlin.

The Modelica Association. The modelica language specification: Version 3.3, 2013. URL https://www.modelica.org/documents/ModelicaSpec33Revision1.pdf.

G. Tsatsaronis and T. Morosuk. Exergy-based methods applied to the chain natural gas – lng – natural gas. Proceedings of the 3rd International Exergy, Life Cycle Assessment, and Sustainability Workshop & Symposium (ELCAS3), July 2013.

George Tsatsaronis. Definitions and nomenclature in exergy analysis and exergoeconomics. Energy, 32(4):249–253, 2007. ISSN 0360-5442. doi:10.1016/j.energy.2006.07.002.

Michael Wetter, Wangda Zuo, Thierry S. Nouidui, and Xiufeng Pang. Modelica buildings library. Journal of Building Performance Simulation, 7(4):253–270, 2014. ISSN 1940-1493. doi:10.1080/19401493.2013.765506.

Stefan Wischhusen, Bruno Lüdemann, and Gerhard Schmitz. Economical analysis of complex heating and cooling systems with the simulation tool hksim. In: Proceedings of the 3rd International Modelica Conference, 2003.

Dirk Zimmer and Daniel Schlabe. Implementation of a modelica library for energy management based on economic models. In The Modelica Association, editor, Proceedings of the 9th International Modelica Conference, pages 133–142, 2012. doi:10.3384/ecp12076133.

Dirk Zimmer, Daniel Bender, and Alexander Pollok. Robust modeling of directed thermofluid flows in complex networks. In: Proceedings of the 2nd Japanese Modelica Conferences, 2018.

Citeringar i Crossref