Applicability of NRTL Model for Prediction of the Viscosity of Alkanolamine + Water Mixtures

Sumudu S. Karunarathne
Faculty of Technology, Natural Sciences and Maritime Sciences, University of South-Eastern Norway, Norway

Lars E. Øi
Faculty of Technology, Natural Sciences and Maritime Sciences, University of South-Eastern Norway, Norway

Ladda ner artikelhttps://doi.org/10.3384/ecp2017073

Ingår i: Proceedings of The 60th SIMS Conference on Simulation and Modelling SIMS 2019, August 12-16, Västerås, Sweden

Linköping Electronic Conference Proceedings 170:11, s. 73-77

Visa mer +

Publicerad: 2020-01-24

ISBN: 978-91-7929-897-5

ISSN: 1650-3686 (tryckt), 1650-3740 (online)


This study discusses the applicability of the non-random two-liquid (NRTL) model to represent viscosity for MEA (monoethanol amine) + H2O and AMP (2-amino-2-methyl-1-propanol) + MEA (monoethanol amine) + H2O mixtures under different amine concentrations at temperature ranges of 293.15 K– 363.15 K and 293.15 K – 343.15 K respectively. The NRTL model is adopted to determine excess Gibbs free energy of mixing and the Eyring’s viscosity model based on absolute rate theory is used to obtain excess free energy of activation for viscous flow. The correlations are proposed for the viscous flow as a function of concentration of the components, temperature and Gibbs free energy. Correlations are capable of representing measured viscosities at 1.3% and 0.3% of absolute average relative deviation (AARD %) for MEA + H2O and AMP + MEA + H2O mixtures respectively. These deviations are acceptable for engineering calculations and correlations can be used in process design and simulations like Aspen HYSYS and ASPEN Plus.


NRTL model, Eyring’s viscosity model, MEA, AMP


T. G. Amundsen, L. E. Øi, and D. A. Eimer. Density and viscosity of monoethanolamine+water+carbon dioxide from (25 to 80) oC. J. Chem. Eng. Data, 54: 3096-3100, 2009. 

R. B. Bird, W. E. Stewart, and E. N. Lightfoot. Transport Phenomena (second edition). USA: John Wiley & Sons, Inc., 2002.

W. Cao, K. Knudsen, A. Fredenslund, and P. Rasmussen. Group-contribution viscosity predictions of liquid mixtures using UNIFAC-VLE parameters. Ind. Eng. Chem. Res, 32: 2088-2092, 1993. 

H. Eyring. Viscosity, Plasticity, and Diffusion as example of absolute reaction rates. Journal of chemical physics, 4: 283-291, 1936. 

A. Hartono, M. O. Mba, and H. F. Svendsen. Physical properties of partially CO2 loaded aqueous

monoethanolamine (MEA). J. Chem. Eng. Data, 59: 1808-1816, 2014. 

A. Hartono, M. Saeed, A. F. Ciftja, and H. F. Svendsen. Modeling of binary and ternary VLE of the AMP/Pz/H2O system. Energy Procedia, 37: 1736-1743, 2013.

Y.-F. Hu. Prediction of viscosity of mixing electrolyte solutions based on the Eyring’s absolute rate theory and the equations of Patwardhan and Kumar. Chemical Engineering Science, 59: 2457-2464, 2004. 

M. N. Islam, M. M. Islam, and M. N. Yeasmin. Viscosity of aqueous solution of 2-methoxyethanol, 2-ethoxyethanol, and ethanolamine. J. Chem. Thermodynamics, 36: 889-893, 2004. 

M. J. Lee and T. K. Lin. Density and viscosity for Monoethanolamine+Water,+Ethanol, and + 2-Propanol. J. Chem. Eng. Data, 40: 336-339, 1995. 

M.-H. Li and Y.-C. Lie. Densities and viscosities of solutions of Monoethanolamine + N-Methyldiethanolamine + water and Monoethanolamine + 2-Amino-2-methyl-1-propanol + water. J. Chem. Eng. Data, 39: 444-447, 1994. 

B. P. Mandal, M. Kundu, and S. S. Bandyopadhyay. Density and viscosity of aqueous solution of (N-Methyldiethanolamine + Monoethanolamine), (N-Methyldiethanolamine + Diethanolamine), (2-Amino-2-methyl-1-propanol + Monoethanolamine), and (2-Amino-2-methyl-1-propanol + Diethanolamine). J. Chem. Eng. Data, 48: 703-707, 2003. 

R. J. Martins, M. J. D. M. Cardoso, and O. E. Barcia. Excess Gibbs free energy model for calculating the viscosity of binary liquid mixtures. Ind. Eng. Chem. Res, 39: 849-854, 2000. 

N. S. Matin, J. E. Remias, and K. Liu. Application of electrolyte-NRTL model for prediction of the viscosity of carbon dioxide loaded aqueous amine solutions. Ind. Eng. Chem. Res, 52: 16979-16984, 2013. 

R. A. McAllister. The viscosity of liquid mixtures. A.I.Ch.E. Journal, 6: 427-431, 1960. 

L. T. Novak, C.-C. Chen, and Y. Song. Segment-Based Eyring-NRTL viscosity model for mixtures containing plymers. Ind. Eng. Chem. Res, 43: 6231-6237, 2004.

J. M. Prausnitz, R. N. Lichtenthaler, and E. G. d. Azevedo. (1999). Molecular thermodynamics of fluid-phase equilibria (Third Edition). Prentice Hall PTR, 1999.

O. Redlich and A. T. Kister. Algebraic representation of thermodynamic properties and the classification of solutions. Ind. Eng. Chem., 40(2): 345-348, 1948.

K. A. G. Schmidt, Y. Maham, and A. E. Mather. Use of the NRTL equation for simultaneous correlation of vapour-liquid equilibria and excess enthalpy. Journal of Thermal Analysis and Calorimetry, 89: 61-72, 2007. 

G. M. Wilson. Vapor–Liquid Equilibrium. XI. A New Expression for the Excess Free Energy of Mixing. J. Am. Chem. Soc, 86: 127-130, 1964. 

Citeringar i Crossref