Intelligent dynamic simulation of fed-batch fermentation processes

Esko K. Juuso
Control Engineering, Environmental and Chemical Engineering, Faculty of Technology, University of Oulu, Finland

Ladda ner artikelhttps://doi.org/10.3384/ecp20170132

Ingår i: Proceedings of The 60th SIMS Conference on Simulation and Modelling SIMS 2019, August 12-16, Västerås, Sweden

Linköping Electronic Conference Proceedings 170:20, s. 132-138

Visa mer +

Publicerad: 2020-01-24

ISBN: 978-91-7929-897-5

ISSN: 1650-3686 (tryckt), 1650-3740 (online)


Batch bioprocesses are difficult to model due to strong nonlinearities, dynamic behaviour, lack of complete understanding and unpredictable disturbances. A cell produces more cells, chemical products and heat from chemical substrates. Typical growth characteristics include several phases whose appearances and lengths depend on the type of organisms and the environmental conditions. Large differences exist between different fermentation runs. The simulator developed for fed-batch fermentation processes consists of three interacting dynamic models, each with three phase specific versions. The models predict dissolved oxygen concentration, oxygen transfer rate and concentration of carbon dioxide in the exhaust gas through the whole process, by using only the control variables as inputs. A decision system based on fuzzy logic to provide smooth gradual changes between phases. The detection of the changes between process phases is improved by using the intelligent trend analysis. The dynamic simulator is suitable for an online forecasting tool in connection with the real process. The operation is based on the ideas of model predictive control (MPC): the previous online measurements on a chosen horizon are used for constructing a starting point and the simulator predicts the operation on a chosen prediction horizon by using the planned control actions. The simulation is started on fairly long time intervals.


intelligent systems, dynamic simulation, fed-batch fermentation, temporal analysis, prediction


H. W. Blanch and D. S. Clark. Biochemical Engineering. CRC Press, 1997. 702 pp.

J. T.-Y. Cheung and G. Stephanopoulos. Representation of process trends - part I. A formal representation framework. Computers & Chemical Engineering, 14(4/5):495–510, 1990.

S. Feyo de Azevedo, P. Dahm, and R. R. Oliveira. Hybrid modelling of biochemical processes: A comparison with the conventional approach. Computers and Chemical Engineering, 21(Suppl.):S751–756, 1997.

L. Dewasme, S. Fernandes, Z. Amribt, L.O. Santos, Ph. Bogaerts, and A. Vande Wouwer. State estimation and predictive control of fed-batch cultures of hybridoma cells. Journal of Process Control, 30:50 – 57, 2015. doi:10.1016/j.jprocont.2014.12.006.

M. Elibol and D. Ozer. In?uence of oxygen transfer on lipase production by rhizopus arrhizus. Process Biochemistry, 36:325–329, 2000.

S.-O. Enfors and L. Häggström. Bioprocess Technology Fundamentals and Applications. Royal Institute of Technology, Stockholm, 2000. 356 pp.

O. Georgieva, M. Wagenknecht, and R. Hampel. Takagi-Sugeno fuzzy model development of batch biotechnological process. International Journal of Approximate Reasoning, 26:233–250, 2001.

L. Gregersen and S. B. Jorgensen. Supervision of fed-batch fermentation. Chemical Engineering Journal, 75:69–76, 1999.

E. Juuso and S. Lahdelma. Intelligent scaling of features in fault diagnosis. In 7th International Conference on Condition Monitoring and Machinery Failure Prevention Technologies, CM 2010 - MFPT 2010, 22-24 June 2010, Stratford-upon-Avon, UK, volume 2, pages 1358–1372, 2010. URL www.scopus.com.

E. K. Juuso. Fuzzy control in process industry: The linguistic equation approach. In H. B. Verbruggen, H.-J. Zimmermann, and R. Babuška, editors, Fuzzy Algorithms for Control, International Series in Intelligent Technologies, volume 14 of International Series in Intelligent Technologies, pages 243–300. Kluwer, Boston, 1999. doi:10.1007/978-94-011-4405-6_10.

E. K. Juuso. Integration of intelligent systems in development of smart adaptive systems. International Journal of Approximate Reasoning, 35(3):307–337, 2004. doi:10.1016/j.ijar.2003.08.008.

E. K. Juuso. Dynamic simulation of a fed-batch enzyme fermentation process. In Proceedings of SIMS 2005, 46th Conference on Simulation and Modeling, October 13-14, 2005, Trondheim, Norway, pages 117–124. Tapir Academic Press, Trondheim, 2005. ISBN 82-519-2093-0.

E. K. Juuso. Intelligent trend indices in detecting changes of operating conditions. In 2011 UKSim 13th International Conference on Modelling and Simulation, pages 162–167. IEEE Computer Society, 2011. doi:10.1109/UKSIM.2011.39.

E. K. Juuso and K. Leiviskä. Adaptive expert systems for metallurgical processes. In S.-L. Jämsä-Jounela and A. J. Niemi, editors, Expert Systems in Mineral and Metal Processing, IFAC Workshop, Espoo, Finland, August 26-28, 1991, IFAC Workshop Series, 1992, Number 2, pages 119–124, Oxford, UK, 1992. Pergamon.


Y. Liu and R. Gunawan. Bioprocess optimization under uncertainty using ensemble modeling. Journal of Biotechnology, 244:34 – 44, 2017. doi:10.1016/j.jbiotec.2017.01.013.

A. Lübbert and R. Simutis. Using measurement data in bioprocess modelling and control. Trends in Biotechnology, 12(8):304 – 311, 1994. doi:10.1016/0167-7799(94)90047-7.

G. Martínez, A. López, A. Esnoz, P. Vírseda, and J. Ibarrola. A new fuzzy control system for white wine fermentation. Food Control, 10:175–180, 1999.

C. Pfefferle, U. Theobald, H. Gürtler, and H.-P. Fiedler. Improved secondary metabolite production in the genus streptosporangium by optimisation of the fermentation condition. Journal of Biotechnology, 80:135–142, 2000.

U. Saarela, K. Leiviskä, and E. Juuso. Modelling of a fed-batch fermentation process. Report A 21, June 2003. Control Engineering Laboratory, University of Oulu, Oulu, 2003a.

U. Saarela, K. Leiviskä, E. Juuso, and A. Kosola. Modelling of a fed-batch enzyme fermentation process. In IFAC International Conference on Intelligent Control Systems and Signal Processing. Faro, Portugal, April 8-11, 2003. IFAC, 2003b.

L. Simon and M. Nazmul Karim. Identi?cation and control of dissolved oxygen in hybridoma cell culture in a shear sensitive environment. Biotechnology Progress, 17:634–642, 2001.

J. Thibault, V. V. Breusegem, and A. Cheruy. On-line prediction of fermentation variables using neural networks. Biotechnology and Bioengineering, 36(12):1041–1048, 1990.

K. Warne, G. Prasad, S. Rezvani, and L. Maguire. Statistical and computational intelligence techniques for inferential model development: a comparative evaluation and a novel proposition for fusion. Engineering Applications of Arti?cial Intelligence, 17:871–930, 2004.

G. P. Whitnell, V. J. Davidson, R. B. Brown, and G. L. Hayward. Fuzzy predictor for fermentation time in a commercial brewery. Computers Chemical Engineering, 17(10):1025–1029, 1993.

H. M. Yao, Y. C. Tian, M. O. Tadé, and H. M. Ang. Variations and modelling of oxygen demand in amino acid production. Chemical Engineering and Processing, 40:401–409, 2001.

P. K. Yegneswaran, M. R. Gray, and B. G. Thompson. Effect of dissolved oxygen control on growth and antibiotic production in streptomyces clavuligerus fermentation. Biotechnology Progress, 10:246–250, 1991.

F. Yoshida. Chapter 1 - aeration and mixing in fermentation. volume 5 of Annual Reports on Fermentation Processes, pages 1 – 34. Elsevier, 1982. doi:10.1016/B978-0-12-040305-9.50005-4.

Citeringar i Crossref