Understanding rational numbers

Terezinha Nunes
University of Oxford, UK

Ladda ner artikel

Ingår i: Att erövra världen. Grundläggande färdigheter i läsning; skrivning och matematik; 26-27 november 2007; Linköping

Linköping Electronic Conference Proceedings 32:3, s. 23-52

Visa mer +

Publicerad: 2008-11-10


ISSN: 1650-3686 (tryckt), 1650-3740 (online)


Rational numbers are important as a foundation for later mathematics learning and particularly for learning algebra. Most researcher agree that students find rational numbers difficult. This article question the traditional use of partitioning as the starting point for the teaching of fractions. It seeks the origin of children’s understanding of rational numbers in their understanding of division. A number of empirical studies are presented on children’s use of action schemes for division; correspondence and partitioning. At last conclusions and implications for education are drawn.


Inga nyckelord är tillgängliga


Behr; M.; Harel; G.; Post; T.; & Lesh; R. (1992). Rational number; ratio; propor-tion. In D. A. Grouws (Ed.); Handbook of Research on Mathematics Teaching and Learning (pp. 296–333). New York: Macmillan.

Behr; M.; Lesh; R.; Post; T.; & Silver; E. A. (1983). Rational number concepts. In R. Lesh & M. Landau (Eds.); Acquisition of Mathematical Concepts and Processes (pp. 91–126). New York: Academic Press.

Behr; M. J.; Wachsmuth; I.; Post; T. R.; & Lesh; R. (1984). Order and equivalence of rational numbers: A clinical teaching experiment. Journal for Research in Mathematics Education; 15(5); 323–341.

Brousseau; G.; Brousseau; N.; & Warfield; V. (2004). Rationals and decimals as re-quired in the school curriculum Part 1: Rationals as measurement. Journal of Mathematical Behavior; 23; 1–20.

Brousseau; G.; Brousseau; N.; & Warfield; V. (2007). Rationals and decimals as re-quired in the school curriculum Part 2: From rationals to decimals. Journal of Mathematical Behavior 26; 281–300.

Charles; K. & Nason; R. (2000). Young children’s partitioning strategies. Educational Studies in Mathematics; 43; 191–221.

Cooney; T. J.; Grouws; D. A.; & Jones; D. (1988). An agenda for research on teaching mathematics. In D. A. Grouws & T. J. Cooney (Eds.); Effective mathe-matics teaching (pp. 253–261). Reston; VA: National Council of Teachers of Mathematics and Hillsdale; NJ: Erlbaum.

Correa; J.; Nunes; T.; & Bryant; P. (1998). Young children’s understanding of division: The relationship between division terms in a non computational task. Journal of Educational Psychology; 90; 321–329.

Fennell; F. S.; Faulkner; L. R.; Ma; L.; Schmid; W.; Stotsky; S.; Wu; H.-H.; et al. (2008). Report of the Task Group on Conceptual Knowledge and Skills Washington DC: U.S. Department of Education; The Mathematics Advisory Panel.

Davis; G. E.; & Hunting; R. P. (1990). Spontaneous partitioning: Preschoolers and discrete items. Educational Studies in Mathematics; 21; 367–374.

Davis; G. E.; & Pepper; K. L. (1992). Mathematical problem solving by pre-school children. Educational Studies in Mathematics; 23; 397–415.

Davis; G. E.; & Pitkethly; A. (1990). Cognitive aspects of sharing. Journal for Research in Mathematics Education; 21; 145-153.
Donaldson; M. (1978). Children’s minds. London: Fontana.

Empson; S. B. (1999). Equal sharing and shared meaning: The development of fraction concepts in a First-Grade classroom. Cognition and Instruction; 17(3); 283–342.

Empson; S. B.; Junk; D.; Dominguez; H.; & Turner; E. (2005). Fractions as the co-ordination of multiplicatively related quantities: a cross-sectional study of chil-dren’s thinking. Educational Studies in Mathematics; 63; 1–28.

Fischbein; E.; Deri; M.; Nello; M.; & Marino; M. (1985). The role of implicit models in solving verbal problems in multiplication and division. Journal for Research in Mathematics Education; 16; 3–17.

Frydman; O.; & Bryant; P. E. (1988). Sharing and the understanding of number equivalence by young children. Cognitive Development; 3; 323–339.

Frydman; O.; & Bryant; P. (1994). Children’s understanding of multiplicative rela-tionships in the construction of quantitative equivalence. Journal of Experimental Child Psychology; 58; 489–509.

Gelman; R.; & Gallistel; C. R. (1978). The Child’s Understanding of Number. Cam-bridge; MA: Harvard University Press.

Gréco; P. (1962). Quantité et quotité: nouvelles recherches sur la correspondance terme-a-terme et la conservation des ensembles. In P.

éco & A. Morf (Eds.); Structures numeriques elementaires: Etudes d’Epistemologie Genetique Vol 13 (pp. 35–52). Paris: Presses Universitaires de France.

Hierbert; J.; & Tonnessen; L. H. (1978). Development of the fraction concept in two physical contexts: An exploratory investigation. Journal for Research in Mathematics Education; 9(5); 374–378.

Hunting; R. P. & Sharpley; C. F. (1988a). Preschoolers’ cognition of fractional units. British Journal of Educational Psychology; 58; 172–183.

Hunting; R. P. & Sharpley; C. F. (1988b). Fractional knowledge in preschool chil-dren. Journal for Research in Mathematics Education; 19(2); 175–180.

Kamii; C.; & Clark; F. B. (1995). Equivalent Fractions: Their Difficulty and Educa-tional Implications. Journal of Mathematical Behavior; 14; 365–378.

Kerslake; D. (1986). Fractions: Children’s Strategies and Errors: A Report of the Strategies and Errors in Secondary Mathematics Project. Windsor: NFER-Nelson.

Kieren; T. (1988). Personal knowledge of rational numbers: Its intuitive and formal development. In J. Hiebert & M. Behr (Eds.); Number concepts and operations in the middle-grades (pp. 53–92). Reston (VA): National Council of Teachers of Mathematics.

Citeringar i Crossref