Embodied anticipation in neurocomputational cognitive architectures for robotic agents

Alberto Montebelli
University of Skövde, School of Humanities and Informatics, Sweden

Robert Lowe
University of Skövde, School of Humanities and Informatics, Sweden

Tom Ziemke
University of Skövde, School of Humanities and Informatics, Sweden

Ladda ner artikelhttp://www.ep.liu.se/ecp_article/index.en.aspx?issue=035;article=006

Ingår i: The Swedish AI Society Workshop May 27-28; 2009 IDA; Linköping University

Linköping Electronic Conference Proceedings 35:6, s. 27-36

Visa mer +

Publicerad: 2009-05-27


ISSN: 1650-3686 (tryckt), 1650-3740 (online)


The coupling between a body (in an extended sense that encompasses both neural and non-neural dynamics) and its environment is here conceived as a critical substrate for cognition. We propose and discuss the plan for a neurocomputational cognitive architecture for robotic agents; so far implemented in its minimal form for supporting the behavior of a simple simulated robotic agent. A non-neural internal bodily mechanism (crucially characterized by a time scale much slower than the normal sensory-motor interactions of the robot with its environment) extends the cognitive potential of a system composed of purely reactive parts with a dynamic action selection mechanism and the capacity to integrate information over time. The same non-neural mechanism is the foundation for a novel; minimalist anticipatory architecture; implementing our bodily-anticipation hypothesis and capable of swift readaptation to related yet novel tasks.1


Cognitive robotics; embodied cognition; dynamic systems; neuromodulation; anticipation; multiple time scales; bio-regulation


Ashby; W. R. (1952). Design for a brain: The origin of adaptive behavior. London: Chapman ‘&’ Hall.

Bechara; A. (2004). The role of emotion in decisionmaking. Brain and Cognition(55); 30-40.

Berg´e; P.; Pomeau; Y.; & Vidal; C.(1984). Order within chaos. Wiley-Interscience.

Chiel; H.; & Beer; R. D. (1997). The brain has a body. Trends in Neurosciences; 20(12); 553-557.

Clancey; W. J. (1997). Situated cognition. Cambridge University Press.

Clark; A.(1997). Being there: Putting brain; body; and world together again. Cambridge; MA: MIT Press.

Clark; A.(2008). Supersizing the mind. Oxford University Press.

Damasio; A.(2000). The feeling of what happens. Harvest Books.

Damasio; A.(2003). Looking for Spinoza. Harcourt.

Di Paolo; E. (2003). Organismically-inspired robotics.

In K. Murase & T. Asakura (Eds.); Dynamical systems approach to embodiment and sociality (p. 19- 42). Adelaide: Advanced Knowledge International.

Froese; T.; & Ziemke; T. (2009). Enactive artificial intelligence. Artificial Intelligence; 173; 466-500.

Fusi; S.; Asaad; W. F.; Miller; E. K.; & Wang; X.-J. (2007). A neural circuit model of flexible sensorimotor mapping. Neuron; 54(2); 319-333.

Haken; H. (2004). Synergetics: introduction and advanced topics. Springer.

Hesslow; G.(2002). Conscious thought as simulation of behaviour and perception. Trends in Cognitive Sciences; 6(6); 242-247.

Ito; M.; Noda; K.; Hoshino; Y.; & Tani; J. (2006). Dynamic and interactive generation of object handling behaviors by a small humanoid robot using a dynamic neural network model. Neural Networks; 19(3); 323-337.

Kelso; J. A. S. (1995). Dynamic patterns. Cambridge; MA: MIT Press.

Kiebel; S. J.; Daunizeau; J.; & Friston; K. J. (2008). A hierarchy of time-scales and the brain. PLoS Computational Biology; 4(11).

Lowe; R.; Herrera; C.; Morse; A.; & Ziemke; T. (2008). The embodied dynamics of emotion; appraisal and attention. In L. Paletta & E. Rome (Eds.); Attention in cognitive systems (p. 1-20). Berlin: Springer.

Melhuish; C.; Ieropoulos; I.; Greenman; J.; & Horsfield; I. (2006). Energetically autonomous robots: food for thought. Autonomous Robots; 21; 187-198.

Montebelli; A.; Herrera; C.; & Ziemke; T. (2007). An analysis of behavioral attractor dynamics. In F. Almeida e Costa (Ed.); Advances in artificial life: Proceedings of the 9th european conference on artificial life (p. 213-222). Berlin: Springer.

Montebelli; A.; Herrera; C.; & Ziemke; T. (2008). On cognition as dynamical coupling: An analysis of behavioral attractor dynamics. Adaptive Behavior; 16(2-3); 182-195.

Montebelli; A.; Lowe; R.; & Ziemke; T. (2009). The cognitive body: from dynamic modulation to anticipation. In Anticipatory behavior in adaptive learning systems. Springer- in press.

Newell; A.(1980). Physical symbol systems. Cognitive Science; 4(2); 135-183.

Paine; R. W.; & Tani; J. (2005). How hierarchical control self-organizes in artificial adaptive systems. Adaptive Behavior; 13(3); 211-225.

Panksepp; J. (2005). Affective consciousness. Consciousness and Cognition; 14; 30-80.

Parisi; D.(2004). Internal robotics. Connection Science; 16(4); 325-338.

Pfeifer; R.; & Bongard; J. (2007). How the body shapes the way we think. Cambridge; MA: MIT Press.

Prinz; J. J. (2004). Gut reactions. Oxford University Press.

Tani; J.; & Ito; M. (2003). Self-organization of behavioral primitives as multiple attractor dynamics. IEEE Trans. on Systems; Man; and Cybernetics. Part B; 33(4); 481-488.

Tani; J.; & Nolfi; S. (1999). Learning to perceive the world as articulated: an approach for hierarchical learning in sensory-motor systems. Neural Networks; 12(7-8); 1131-1141.

Thelen; E.; & Smith; L. B. (1996). A dynamic systems approach to the development of cognition and action. MIT Press.

Van Gelder; T. (2000). The dynamical hypothesis in cognitive science. Behavioral and Brain Sciences; 21; 615-628.

Varela; F. J.; Thompson; E. T.; & Rosch; E. (1992). The embodied mind. MIT Press.

Wiener; N.(1965). Cybernetics; or control and communication in the animal and the machine. MIT Press.

Yamashita; Y.; & Tani; J. (2008). Emergence of functional hierarchy in a multiple timescale neural network model. PLoS Computational Biology; 4(11).

Ziemke; T. (2008). On the role of emotion in biological and robotic autonomy. BioSystems; 91; 401-408.

Ziemke; T.; Hesslow; G.; & Jirenhed; D. A. (2005). Internal simulation of perception. Neurocomputing; 68; 85-104.

Ziemke; T.; & Lowe; R. (2009). On the role of emotion in embodied cognitive architectures: From organisms to robots. Cognitive computation; 1(1); 104-117.

Ziemke; T.; Zlatev; J.; & Frank; R. M. (Eds.). (2007). Body; language and mind: Embodiment (Vol. 1). Berlin/New York: Mouton de Gruyter.

Citeringar i Crossref