Preliminary design of electromechanical actuators with Modelica

Marc Budinger
Universitå de Toulouse, INSA/UPS, Laboratoire de Gånie Måcanique de Toulouse, France

Jonathan Liscouet
Universitå de Toulouse, INSA/UPS, Laboratoire de Gånie Måcanique de Toulouse, France

Yvan Lefavre
Universitå de Toulouse, INPT/CNRS, Laboratoire Plasma et Conversion d’Energie, France

Julien Fontchastagner
Universitå de Toulouse, INPT/CNRS, Laboratoire Plasma et Conversion d’Energie, France

Abdenour Abdelli
Universitå de Toulouse, INPT/CNRS, Laboratoire Plasma et Conversion d’Energie, France

Loig Allain
LMS-Imagine, La Citå Internationnale, France

Ladda ner artikelhttp://dx.doi.org/10.3384/ecp09430099

Ingår i: Proceedings of the 7th International Modelica Conference; Como; Italy; 20-22 September 2009

Linköping Electronic Conference Proceedings 43:18, s. 168-177

Visa mer +

Publicerad: 2009-12-29

ISBN: 978-91-7393-513-5

ISSN: 1650-3686 (tryckt), 1650-3740 (online)


This article deals with a methodology for a computer-aided design of electromechanical actuators from the preliminary design of components to the detail design of the electrical motor. The developed library of components for the simulation takes advantage of the non-causal and object oriented characteristics of the Modelica language. The capabilities of the Modelica language and the LMS.Imagine.Lab AMESim or Dymola Platforms are strongly used in order to build a fully integrated process to design and size the different component of the final actuator. The proposed approach is illustrated with the sizing of a flight control actuator.


Preliminary design; inverse simulation; scaling laws; electromechanical actuator; brushless motor


[1] T. Ford; “More-electric aircraft;” Emerald; vol. 77; 2005.

[2] F. Roos; “Towards a methodology for inte-grated design of mechatronic servo systems;” Text; KTH; Machine Design; 2007.

[3] Linear Motioneering; Danaher Motion;.

[4] ServoSoft; ControlEng; .

[5] Cymex - Alpha; WITTENSTEIN formerly alpha gear drives; .

[6] Jardin; Audrey; Marquis-Favre; Wilfrid; Thomasset; Daniel; Guillemard; Franck; et Lorenz; Francis; “ Study of a Sizing Methodology and a ModelicaCode Generator for the Bond Graph Tool MS1;” University of Applied Sciences; Bielefeld; Germany: 2008; pp. 125-134.

[7] P. Fritzson et V. Engelson; “Modelica — A unified object-oriented language for system modeling and simulation;” ECOOP’98 — Object-Oriented Programming; 1998; pp. 67-90.

[8] H. Elmqvist; D. Ab; S.E. Mattsson; et M. Otter; “Modelica: The new object-oriented modeling language;” presented at The 12th European Simu-lation Multiconference;” In Proceedings of The 12th European Simulation Multiconference; 1998; pp. 127--131.

[9] P. Minotti et A. Ferreira; Les micromachines; Paris: Hermès; 1998.

[10] G. Spinnler; Conception des machines : principes et applications. 3; Dimensionnement ; Lausanne: Presses polytechniques et universitaires romandes; Paris; 2005.

[11] B. Multon; H. Ben Ahmed; M. Ruellan; et G. Robin; “Comparaison du couple massique de diverses architectures de machines tournantes syn-chrones à aimants;” Société de l’Electricité; de l’Electronique et des Technologies de l’Information et de la Communication (SEE); Paris; FRANCE (1995) (Revue); 2006; pp. 85-93.

[12] M. Jufer; Traite d’électricité vol9 :transducteurs; Presses Polytechniques et Universi-taires Romandes (PPUR); 1998.

[13] "Brushless DC Motors;" On line ed; Maxon; Ed.; 2009; http://www.maxonmotor.com/.

[14] Gordon R. Slemon and Xian Liu; “Modeling and Design Optimization of Permanent Magnet Motors”; Electric Machines and Power Systems; 20:71-92; 1992. doi: 10.1080/07313569208909572.

[15] J. R. Hendershot Jr and T. J. E. Miller; “Design of Brushless Permanent Magnet Motors”; Monographs in Electrical Engineering No. 37; Magma Physics Publishing and Clarendon Press; Oxford; 1994.

[16] Jacek F. Gieras and Mitchell Wing; “Permanent Magnet Motor Technology; Design and Applications”; Second Edition; Revised and Expanded; Marcel Dekker Inc.; 2002.

[17] E. Fitan; F. Messine; and B. Nogarede; “A general analytical model of electrical permanent magnet machine dedicated to optimal design”; COMPEL; 22(4):1037–1050; 2003. doi: 10.1108/03321640310482986.

[18] Gordon R. Slemon and Xian Liu; “Core Losses In Permanent Magnet Motors”; IEEE Transaction on Magnetics; vol. 26; No. 5; 1653-1655; September 1990.

[19] T. J. E. Miller; “Brushless Permanent-Magnet and Reluctance Motor Drives”; Monographs in Electrical Engineering No. 21; Clarendon Press; Oxford; 1989.

[20] T. Sebastian and G. R. Slemon. Transient modelling and performance of variable speed permanent magnet motors; IEEE Transaction on Magnetics; IA-25(1) :101–107; 1989.

Citeringar i Crossref