The Planet Simulator

Edilbert Kirk
KlimaCampus, University of Hamburg, Germany

Klaus Frædrich
KlimaCampus, University of Hamburg, Germany

Frank Lunkeit
KlimaCampus, University of Hamburg, Germany

Carmen Ulmen
KlimaCampus, University of Hamburg, Germany

Ladda ner artikelhttp://www.ep.liu.se/ecp_article/index.en.aspx?issue=045;article=007

Ingår i: State of Climate Visualization

Linköping Electronic Conference Proceedings 45:7, s. 49-55

Visa mer +

Publicerad: 2009-12-09


ISSN: 1650-3686 (tryckt), 1650-3740 (online)


The Planet Simulator is a Model of Intermediate Complexity (MIC); suitable for climate and paleo-climate simulations and time scales up to ten thousand years or more. It runs on a wide range of hardware and operating systems including massive parallel cluster and workstations with UNIX; Solaris; Linux; MAC OS or any other UNIX style operating system. The priorities in development are set to speed; easy handling and portability. Its modular structure allows a problem dependent configuration. A graphical Model Starter (MoSt) can be used to select a model configuration from the repository; set its parameters; compile and run the model. The model can be run either in production mode for maximum performance or in interactive mode using a Graphical User Interface (GUI). This GUI is both a real time visualization interface for all model variables and a tool for tuning and experimenting with the model.


Inga nyckelord är tillgängliga


Asselin; R. (1972). Frequency filter for time integrations; Monthly Weather Review. 100; pp. 487–490.

Eliasen; E.; B. Machenhauer; E. Rasmusson; (1970). On a numerical method for integration of the hydrodynamical equations with a spectral representaion of the horizontal fields; Institute of Theoretical Meteorology; University of Copenhagen.

Fraedrich; K.; H. Jansen; E. Kirk; F. Lunkeit; (2005). The Planet Simulator: Green planet and desert world; Meteorologische Zeitschrift; 14; pp. 305–314.

Fraedrich; K.; E. Kirk; U. Luksch; and F. Lunkeit; (2005). The Portable University Model of the Atmosphere (PUMA): Storm track dynamics and low frequency variability; Meteorologische Zeitschrift; 14; pp. 735–745.

Hoskins; B. J.; A. J. Simmons; (1975). A multi-layer spectral model and the semi-implicit method; Quarterly Journal of the Royal Meteorological Society; 101; pp. 637–655.

Lunkeit; F.; M. Böttinger; K. Fraedrich; H. Jansen; E. Kirk; A. Kleidon; U. Luksch; (2007). Planet Simulator Reference Manual Version 15.0. Available at http://www.mi.uni hamburg.de/fileadmin/files/forschung/theomet/planet_simulator/downloads/PS_ReferenceGuide.pdf.

Orszag; S. A. (1970). Transform method for calculation of vector coupled sums; Journal of the Atmospheric Sciences; 27; pp. 890–895.

Robert; A. J. (1981). A stable numerical integration scheme for the primitive meteorological equations; Atmos. Ocean 19; pp. 35–46.

Roeckner; E.; K. Arpe; L. Bengtsson; (992). Simulation of present-day climate with the ECHAM model: Impact of model physics and resolution; Technical Report 93; Max- Planck-Institut.

Simmons; A. J.; B. Hoskins; D. Burrdidge; (1978). Stability of the semi-implicit method of time integration; Monthly Weather Review; 106; pp. 405–412.

Citeringar i Crossref