Particle-based Rendering for Porous Media

S. Grottel
Visualisation Research Center (VISUS), University of Stuttgart, Germany

G. Reina
Visualisation Research Center (VISUS), University of Stuttgart, Germany

T. Zauner
Institute for Computational Physics, University of Stuttgart, Germany

R. Hilfer
Institute for Computational Physics, University of Stuttgart, Germany

T. Ertl
Visualisation Research Center (VISUS), University of Stuttgart, Germany

Ladda ner artikelhttp://www.ep.liu.se/ecp_article/index.en.aspx?issue=052;article=008

Ingår i: Proceedings of SIGRAD 2010

Linköping Electronic Conference Proceedings 52:8, s. 45-51

Visa mer +

Publicerad: 2010-11-29

ISBN: 978-91-7393-281-3

ISSN: 1650-3686 (tryckt), 1650-3740 (online)


Particle-based modeling and simulation of granular or porous media is a widely-used tool in physics and material science to study behavior like fracture and failure under external force. Classical models use spherical particles. However; up to 108 polyhedral-shaped particles are required to achieve realistic results comparable to laboratory experiments. As contact points and exposed surfaces play important roles for the analysis; a meaningful visualization aiding the numeric analysis has to represent the exact particle shapes. For particle-based data sets with spherical particles; ray tracing has been established as the state-of-the-art approach yielding high rendering performance; optimal visual quality and good scalability. However; when rendering polyhedral-shaped particles; there is no issue with visual quality comparing polygon-based rendering approaches and ray casting; whereas the polygon-based approaches cause significantly lower fragment load. The paper at hand investigates the advantages and drawbacks of both approaches by analyzing the performance of state-of-the-art rendering methods employing vertex-buffer objects; hardware-supported instancing; geometry shader; and GPU-based ray casting.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling—Curve; surface; solid; and object representations; I.3.8 [Computer Graphics]: Computational Geometry and Object Modeling—Applications.


Inga nyckelord är tillgängliga


[BH99] BISWAL B.; HILFER R.: Microstructure analysis of reconstructed porous media. Physica A 266 (1999); 307. 2

[BHK09] BISWAL B.; HELD R.; KHANNA V.; WANG J.; HILFER R.: Towards precise prediction of transport properties from synthetic computer tomography of reconstructed porous media. Physical Review E 80 (2009); 041301. 2

[BØH09] BISWAL B.; ØREN P.; HELD R.; BAKKE S.; HILFER R.: Modeling of multiscale porous media. Image Analysis and Stereology 28 (2009); 23–34. 2

[Geo] GLSL geometry shader 4 extension specification. http://developer.download.nvidia.com/opengl/specs/ GL_EXT_geometry_shader4.txt. 4

[GRDE10] GROTTEL S.; REINA G.; DACHSBACHER C.; ERTL T.: Coherent Culling and Shading for Large Molecular Dynamics Visualization. Computer Graphics Forum 29; 3 (2010); 953–962. http://www.visus.uni-stuttgart.de/megamol. 1; 3

[GRE09] GROTTEL S.; REINA G.; ERTL T.: Optimized Data Transfer for Time-dependent; GPU-based Glyphs. In Proceedings of IEEE Pacific Visualization Symposium 2009 (2009); pp. 65–72. 3

[GRVE07] GROTTEL S.; REINA G.; VRABEC J.; ERTL T.: Visual Verification and Analysis of Cluster Detection for Molecular Dynamics. vol. 13; pp. 1624–1631. 1

[Gum03] GUMHOLD S.: Splatting Illuminated Ellipsoids with Depth Correction. In Workshop on Vision; Modelling; and Visualization VMV’03 (2003); pp. 245–252. 1

[Hil96] HILFER R.: Transport and relaxation phenomena in porous media. Adv. Chem. Phys. XCII (1996); 299. 1; 2

[Hil00] HILFER R.: Local porosity theory and stochastic reconstruction for porous media. In Räumliche Statistik und Statistische Physik (2000); Stoyan D.; Mecke K.; (Eds.); Lecture Notes in Physics; Vol. 254; Springer; p. 203. 2

[Hil02] HILFER R.: Review on scale dependent characterization of the microstructure of porous media. Transport in Porous Media 46 (2002); 373. 2

[HZWH09] HARTING J.; ZAUNER T.; WEEBER R.; HILFER R.: Numerical Modeling of Fluid Flow in Porous Media and in Driven Colloidal Suspensions. Springer; 2009; p. 349. 2

[JBPE99] JENSEN R. P.; BOSSCHER P. J.; PLESHA M. E.; EDIL T. B.: DEM simulation of granular media-structure interface: effects of surface roughness and particle shape. International Journal for Numerical and Analytical Methods in Geomechanics 23; 6 (1999); 531–547. 1

[KHK09] KNOLL A.; HIJAZI Y.; KENSLER A.; SCHOTT M.; HANSEN C.; HAGEN H.: Fast Ray Tracing of Arbitrary Implicit Surfaces with Interval and Affine Arithmetic. Computer Graphics Forum 28; 1 (2009); 26–40. 1

[KK86] KAY T. L.; KAJIYA J. T.: Ray tracing complex scenes. In SIGGRAPH ’86: Proceedings of the 13th annual conference on Computer graphics and interactive techniques (New York; NY; USA; 1986); ACM; pp. 269–278. 4

[LBFH10] LATIEF F.; BISWAL B.; FAUZI U.; HILFER R.: Continuum reconstruction of the pore scale microstructure for fontainebleau sandstone. Physica A: Statistical Mechanics and its Applications 389; 8 (2010); 1607 – 1618. 1; 2

[LVRH07] LAMPE O. D.; VIOLA I.; REUTER N.; HAUSER H.: Two-Level Approach to Efficient Visualization of Protein Dynamics. IEEE Transactions on Visualization and Computer Graphics 13; 6 (2007); 1616–1623. 2; 4

[MC95] MARTINELLI G.; CAROTTA M. C.: Thick-film gas sensors. Sensors and Actuators B: Chemical 23; 2-3 (1995); 157 – 161. 2

[MH99] MANWART C.; HILFER R.: Reconstruction of random media using Monte Carlo methods. Physical Review E 59 (1999); 5596. 2

[MTH00] MANWART C.; TORQUATO S.; HILFER R.: Stochastic reconstruction of sandstones. Phys.Rev.E 62 (2000); 893. 2

[NLC02] NA H.-S.; LEE C.-N.; CHEONG O.: Voronoi diagrams on the sphere. Computational Geometry 23; 2 (2002); 183 – 194. 3

Citeringar i Crossref