Integral Analysis of Feedstocks and Technologies for Biodiesel Production in Tropical and Subtropical Countries

Carlos Ariel Cardona
Universidad Nacional de Colombia sede Manizales, Colombia

Luis Eduardo Rincón
Universidad Nacional de Colombia sede Manizales, Colombia

Juan Jacobo Jaramillo
Universidad Nacional de Colombia sede Manizales, Colombia

Ladda ner artikelhttp://dx.doi.org/10.3384/ecp11057216

Ingår i: World Renewable Energy Congress - Sweden; 8-13 May; 2011; Linköping; Sweden

Linköping Electronic Conference Proceedings 57:29, s. 216-223

Visa mer +

Publicerad: 2011-11-03

ISBN: 978-91-7393-070-3

ISSN: 1650-3686 (tryckt), 1650-3740 (online)


In this work different methodologies from process engineering based on conceptual design and process simulation with ASPEN PLUS; life cycle assessment and waste reduction algorithm are used for energy; and environmental impact assessment of 5 different feedstocks (Palm; Jatropha; Microalgae; Tallow; Waste Cooking Oil) using 3 different technological configurations from industry; such processes with acid catalysis; basic catalysis and cogeneration; at Colombian and Peruvian context. It was found how productivities for process catalyzed with NaOH are comparatively higher (1.007-1.014 kg of Biodiesel per kg of Crude Oil); than those catalyzed with H2SO4 (0.845-0.949 kg of Biodiesel per kg of Crude Oil). The Production costs for basic catalyzed processes (USD/L 0.408-0.505) were higher than those for acid catalyzed processes (USD/L 0.219-0.257). The PEI (Potential Environmental Impact) generated for basic catalyzed; had a PEI per kg between - 0.078 and -0.033; while acid catalyzed -0.031 and -0.025. Finally LCA for jatropha and palm oil process; evidence Ecosystem Quality damage; a Resources damage; a Human Health damage lower for Jatropha oil in comparison to Palm oil. The Jatropha oil; in a basic catalyzed configuration with energy cogeneration is the best alternative of process; environmental and economics by biodiesel production.


Integral Analysis; Biodiesel; WAR algorithm; LCA; Economic Evaluation


[1]. Martín; C.; et al.; Fractional characterisation of jatropha; neem; moringa; trisperma; castor and candlenut seeds as potential feedstocks for biodiesel production in Cuba. Biomass and Bioenergy; 2010. 34(4): p. 533-538. doi: 10.1016/j.biombioe.2009.12.019.

[2]. Reith; J.H.; et al.; Co-production of bio-ethanol; electricity and heat from biomass residues; in 12th European Conference and Technology Exhibition on Biomass for Energy; Industry and Climate Protection. 2002: Amsterdam; the Netherlands.

[3]. Hoh; R.; Malaysia Biofuels Annual Report 2010; G.A.I. Network; Editor. 2010; USDA Foreign Agricultural Service: Kuala Lumpur.

[4]. Sysaneth; S. and L. Duangsavanh; Impacts of Jatropha Plantation on Smallholders; T.S.M.R. Network; Editor. 2009; National Agriculture and Forestry Research Institute.

[5]. Lardon; L.; et al.; Life-Cycle Assessment of Biodiesel Production from Microalgae. Environmental Science & Technology; 2009. 43(17): p. 6475-6481. doi: 10.1021/es900705j.

[6]. Phan; A.N. and T.M. Phan; Biodiesel production from waste cooking oils. Fuel; 2008. 87: p. 3490-3496. doi: 10.1016/j.fuel.2008.07.008.

[7]. da Cunha; M.E.; et al.; Beef tallow biodiesel produced in a pilot scale. Fuel Processing Technology; 2009. 90(4): p. 570-575. doi: 10.1016/j.fuproc.2009.01.001.

[8]. Ma; F.; L.D. Clements; and M.A. Hanna; Biodiesel Fuel from Animal Fat. Ancillary Studies on Transesterification of Beef Tallow. Industrial & Engineering Chemistry Research; 1998. 37(9): p. 3768-3771. doi: 10.1021/ie980162s.

[9]. Uddin; S.N. and L. Barreto; Biomass-fired cogeneration systems with CO2 capture and storage. Renewable Energy; 2007. 32(6): p. 1006-1019. doi: 10.1016/j.renene.2006.04.009.

[10]. Chang; A.-F. and Y.A. Liu; Integrated Process Modeling and Product Design of Biodiesel Manufacturing. Industrial & Engineering Chemistry Research; 2009. 49(3): p. 1197-1213. doi: 10.1021/ie9010047.

[11]. Marrero; J. and R. Gani; Group-contribution based estimation of pure component properties. Fluid Phase Equilibria; 2001. 183-184: p. 183-208. doi: 10.1016/S0378-3812(01)00431-9.

[12]. Granjo; J.F.O.; B.P.D. Duarte; and N.M.C. Oliveira; Kinetic Models for the Homogeneous Alkaline and Acid Catalysis in Biodiesel Production; in Computer Aided Chemical Engineering; C.A.O.d.N. Rita Maria de Brito Alves and Evaristo Chalbaud Biscaia; Jr.; Editors. 2009; Elsevier. p. 483-488.

[13]. Young; D.; R. Scharp; and H. Cabezas; The waste reduction (WAR) algorithm: environmental impacts; energy consumption; and engineering economics. Waste Management; 2000. 20(8): p. 605-615. doi: 10.1016/S0956-053X(00)00047-7.

[14]. Mata; T.M.; Young; D.M.; and Costa C.; Life Cycle Assessment of Gasoline Blending Options. Environmental Science Technology; 2003. 37: p. 3724 3732. doi: 10.1021/es034024s.

[15]. Zhang; Y.; et al.; Biodiesel production from waste cooking oil: 1. Process design and technological assessment. Bioresource Technology; 2003. 89(1): p. 1-16. doi: 10.1016/S0960-8524(03)00040-3.

[16]. Chisti; Y.; Biodiesel from microalgae. Biotechnology Advances; 2007. 25(3): p. 294-306.54

Citeringar i Crossref