Influence of Different Cell Disruption Techniques on Mono Digestion of Algal Biomass

Sebastian Schwede
Ruhr-Universität Bochum, Thermodynamics, Bochum, Germany

Alexandra Kowalczyk
Ruhr-Universität Bochum, Thermodynamics, Bochum, Germany

Mandy Gerber
Ruhr-Universität Bochum, Thermodynamics, Bochum, Germany

Roland Span
Ruhr-Universität Bochum, Thermodynamics, Bochum, Germany

Ladda ner artikelhttp://dx.doi.org/10.3384/ecp1105741

Ingår i: World Renewable Energy Congress - Sweden; 8-13 May; 2011; Linköping; Sweden

Linköping Electronic Conference Proceedings 57:6, s. 41-47

Visa mer +

Publicerad: 2011-11-03

ISBN: 978-91-7393-070-3

ISSN: 1650-3686 (tryckt), 1650-3740 (online)


Due to high growth rates microalgae provide an enormous potential as a source for biomass besides conventional energy crops. The algal biomass can be used for bioenergy production. Anaerobic digestion to biogas is one of the most energy-efficient and environmentally beneficial technologies for alternative energy carrier production. The resistance of the algal cell wall is generally a limiting factor for cell digestibility. In the present work different cell disruption techniques (microwave heating; heating for 8 hours at 100°C; freezing over night at -15°C; French press; ultrasonic) on algal biomass of Nannochloropis salina were carried out. The disrupted material was digested to biogas in batch experiments according to VDI 4630. The results indicate that hydrolysis of algal cells is the rate-limiting step in anaerobic digestion of algal biomass. Cell disruption by heating; microwave and French press show a considerable increase in specific biogas production and degradation rate. Compared to the untreated sample the specific biogas production was increased for the heating approach by 58 %; for the microwave by 40 % and for the French press by 33 %.


Anaerobic digestion; Microalgae; Cell disruption; Specific biogas production; Pretreatment


[1] Y. Chisti; Biodiesel from microalgae; Biotechnology Advances 25; 2007; pp. 294–306. doi: 10.1016/j.biotechadv.2007.02.001.

[2] A. S. van Carlsson; J. B. Beilen; R. Möller; D. Clayton; Micro- and macroalgae utility for industrial applications. Outputs from the EPOBIO project. D. Bowles. York; UK; 2007.

[3] V. Patil; K. Tran; H. R. Giselrød; Towards sustainable production of biofuels from microalgae; International Journal of Molecular Sciences 9; 2008; pp. 1188–1195. doi: 10.3390/ijms9071188.

[4] L. Rodolfi; G. Chini Zittelli; N. Bassi; G. Padovani; N. Biondi; G. Bonini; M. R. Tredici; Microalgae for oil: Strain selection; induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor; Biotechnology and Bioengineering 102; 2009; pp. 100–112. doi: 10.1002/bit.22033.

[5] P. Weiland; Biogas production: current state and perspectives; Applied Microbiology and Biotechnology 85; 2010; pp. 849–860. doi: 10.1007/s00253-009-2246-7.

[6] B. Sialve; N. Bernet; O. Bernard; Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable; Biotechnology advances 27; 2007; pp. 409–416. doi: 10.1016/j.biotechadv.2009.03.001.

[7] S. Derenne; C. Largeau; C. Berkaloff; B. Rousseau; C. Wilhelm; P. G. Hatcher; Non-hydrolysable macromolecular constituents from outer walls of Chlorella fusca and Nanochlorum eucaryotum; Phytochemistry 31; 1992; pp. 1923–1929. doi: 10.1016/0031-9422(92)80335-C.

[8] F. Gelin; I. Boogers; A. A. M. Noordeloos; J. S. S. Damste; R. Riegman; J. W. de Leeuw; Resistant biomacromolecules in marine microalgae of the classes Eustigmatophyceae and Chlorophyceae: Geochemical implications; Organic Geochemistry 26; 1997; pp. 659–675. doi: 10.1016/S0146-6380(97)00035-1.

[9] DIN EN 12880; Bestimmung des Trockenrückstandes und des Wassergehalts; 2001.

[10] DIN EN 12879; Bestimmung des Glühverlustes der Trockenmasse; 2000.

[11] P. H. Chen; W. J. Oswald; Thermochemical treatment for algal fermentation; Environment International 24; 1998; pp. 889–897. doi: 10.1016/S0160-4120(98)00080-4.

[12] R. Samson; A. Leduy; Influence of mechanical and thermochemical pretreatments on anaerobic digestion of Spirulina maxima algal biomass; Biotechnology Letters 5; 1983; pp. 671–676. doi: 10.1007/BF01386360.

[13] J. Lee; C. Yoo; S. Jun; C. Ahn; H. Oh; Comparison of several methods for effective lipid extraction from microalgae; Bioresource Technology 101; 2010; pp. 75-77. doi: 10.1016/j.biortech.2009.03.058.

[14] K. Cormann; M. Ikeuchi; M. Rögner; M. Nowaczyk; R. Stoll; Sequence-specific 1H; 13C; and 15N backbone assignment of Psb27 from Synechocystis PCC 6803; Biomolecular NMR Assignments 3; 2009; pp. 247-249. doi: 10.1007/s12104-009-9186-0.

[15] VDI 4630; Vergärung organischer Stoffe; 2005.

[16] S. Balasubramanian; J. D. Allen; A. Kanitkar; D. Boldor; Oil extraction from Scenedesmus obliquus using a continuous microwave system - design; optimization; and quality characterization; Bioresource Technology 102 ; 2011; pp. 3396-3403. doi: 10.1016/j.biortech.2010.09.119.

[17] J. H. Mussgnug; V. Klassen; A. Schlüter; O. Kruse; Microalgae as substrates for fermentative biogas production in a combined biorefinery concept; Journal of Biotechnology 150; 2010; pp. 51-56. doi: 10.1016/j.jbiotec.2010.07.030.

Citeringar i Crossref