Konferensartikel

Thermodynamic Analysis and Potential Efficiency Improvements of a Biochemical Process for Lignocellulosic Biofuel Production

M. Imroz Sohel
Scion, Te Papa Tipu Innovation Park, New Zealand

Michael W. Jack
Scion, Te Papa Tipu Innovation Park, New Zealand

Ladda ner artikelhttp://dx.doi.org/10.3384/ecp11057500

Ingår i: World Renewable Energy Congress - Sweden; 8-13 May; 2011; Linköping; Sweden

Linköping Electronic Conference Proceedings 57:67, s. 500-507

Visa mer +

Publicerad: 2011-11-03

ISBN: 978-91-7393-070-3

ISSN: 1650-3686 (tryckt), 1650-3740 (online)

Abstract

This paper presents a thermodynamic analysis of a biochemical process for the production of bioethanol from a lignocellulosic feedstock. The major inefficiencies in the process are identified as: i) the combustion of lignin for process heat and power production and ii) the simultaneous saccharification and fermentation process. As lignin is not converted to ethanol and lignin has a high value of chemical exergy; the overall efficiency of the biochemical process largely depends on how the lignin is utilized. We therefore consider integrating a source of low temperature heat; such as waste heat or low-enthalpy geothermal heat; into a biochemical lignocellulosic biorefinery to provide process heat. This enables the lignin-enriched residue to be used either as a feedstock for chemicals and materials or for on-site electricity generation. Our analysis shows that integrating low temperature heat source into a biorefinery in this way represents an improvement in overall resource utilization efficiency.

Nyckelord

Bioenergy; biorefinery; geothermal energy; process heat; integrated approach

Referenser

[1] IEA; From 1st to 2nd Generation Generation Biofuel Technologies. 2008.

[2] Metzger; J.O. and A. Huttermann; Sustainable global energy supply based on lignocellulosic biomass from afforestation of degraded areas. Naturwissenschaften; 2008. 96: p. 279-288. doi: 10.1007/s00114-008-0479-4.

[3] Schmer; M.R.; et al.; Net energy of cellulosic ethanol from switchgrass. Proc. Natl. Acad. Sci. USA; 2008. 105: p. 464-469. doi: 10.1073/pnas.0704767105.

[4] Tilman; D.; et al.; Beneficial Biofuels-The Food; Energy; and Environment Trilemma. Science; 2009. 325: p. 270. doi: 10.1126/science.1177970.

[5] Ragauskas; A.J.; et al.; The path forward for biofuels and biomaterials. Science; 2006. 311: p. 484-489. doi: 10.1126/science.1114736.

[6] Demirbas; A.; Biorefineries: Current activities and future developments. Energy Conversion and Management; 2009. 50(11): p. 2782-2801. doi: 10.1016/j.enconman.2009.06.035.

[7] Dodds; D.R. and R.A. Gross; Chemicals from Biomass. Science; 2007. 318: p. 1250-1251. doi: 10.1126/science.1146356.

[8] Elnashaie; S.S.E.H.; et al.; Integrated system approach to sustainability bio-fuels and bio-refineries. Bulletin of Science; Technology and Society; 2008. 28(6): p. 510-520. doi: 10.1177/0270467608317218.

[9] Zhang; Y.H.P.; Reviving the carbohydrate economy via multi-product lignocellulose biorefinaries. J Ind Microbiol Biotechnol: BioEnergy- Special Issue; 2008. 35(5): p. 367-75. doi: 10.1007/s10295-007-0293-6.

[10]Huber; G.W.; S. Iborra; and A. Corma; Synthesis of Transportiation Fuels from Biomass: Chemistry; Catalysis; and Engineering. Chem. Rev.; 2006. 106: p. 4044-4098. doi: 10.1021/cr068360d.

[11]Wooley; R.; et al.; Lignocellulosic Biomass toEthanol Process Design and Economics Utilizing Co-Current Dilute Acid Prehydrolysis and Enzymatic Hydrolysis Current and Futuristic Scenarios. 1999; National Reneable Energy Laboratory. doi: 10.2172/12150.

[12]Larsen; J.; et al.; The IBUS Process – Lignocellulosic Bioethanol Close to a Commercial Reality. Chem. Eng. Technol; 2008. 31(5): p. 765–772. doi: 10.1002/ceat.200800048.

[13]Cardona Alzate; C.A. and O.J. Sánchez Toro; Energy consumption analysis of integrated flowsheets for production of fuel ethanol from lignocellulosic biomass. Energy; 2006. 31(13): p. 2447-2459. doi: 10.1016/j.energy.2005.10.020.

[14]Piccolo; C. and F. Bezzo; A techno-economic comparison between two technologies for bioethanol production from lignocellulose. Biomass and Bioenergy; 2009. 33(3): p. 478-491. doi: 10.1016/j.biombioe.2008.08.008.

[15]Szargut; J.; D.R. Morris; and F.R. Steward; Exergy analysis of thermal; chemical; and metallurgical processes. 1988: Hemisphere publishing corporation.

[16]Dincer; I. and M.A. Rosen; Thermodynamic aspects of renewables and sustainable development. Renewable and Sustainable Energy Reviews; 2005. 9(2): p. 169-189. doi: 10.1016/j.rser.2004.02.002.

[17]de Koeijer; G. and R. Rivero; Entropy production and exergy loss in experimental distillation columns. Chemical Engineering Science; 2003. 58(8): p. 1587-1597. doi: 10.1016/S0009-2509(02)00627-9.

[18]Jarungthammachote; S. and A. Dutta; Thermodynamic equilibrium model and second law analysis of a downdraft waste gasifier. Energy; 2007. 32(9): p. 1660-1669. doi: 10.1016/j.energy.2007.01.010.

[19]Lu; Y.; et al.; Thermodynamic modeling and analysis of biomass gasification for hydrogen production in supercritical water. Chemical Engineering Journal; 2007. 131(1-3): p. 233-244. doi: 10.1016/j.cej.2006.11.016.

[20]Ojeda; K. and V. Kafarov; Exergy analysis of enzymatic hydrolysis reactors for transformation of lignocellulosic biomass to bioethanol. Chemical Engineering Journal; 2009. 154 (1–3); 390–395. doi: 10.1016/j.cej.2009.05.032.

[21]Røsjorde; A. and S. Kjelstrup; The second law optimal state of a diabatic binary tray distillation column. Chemical Engineering Science; 2005. 60(5): p. 1199-1210. doi: 10.1016/j.ces.2004.09.059.

[22]Prins; M.J.; K.J. Ptasinski; and F.J.J.G. Janssen; Exergetic optimisation of a production process of Fischer-Tropsch fuels from biomass. Fuel Processing Technology; 2005. 86(4): p. 375-389. doi: 10.1016/j.fuproc.2004.05.008.

[23]Talens; L.; G. Villalba; and X. Gabarrell; Exergy analysis applied to biodiesel production. Resources; Conservation and Recycling; 2007. 51(2): p. 397-407. doi: 10.1016/j.resconrec.2006.10.008.

[24]Tan; H.T.; K.T. Lee; and A.R. Mohamed; Second-generation bio-ethanol (SGB) from Malaysian palm empty fruit bunch: Energy and exergy analyses. Bioresource Technology; 2010. 101 p. 5719–5727. doi: 10.1016/j.biortech.2010.02.023.

[25]Sohel; M.I. and M.W. Jack; Thermodynamic analysis of lignocellulosic biofuel production via a biochemical process: guiding technology selection and research focus. Bioresource Technology. DOI:10.1016/j.biortech.2010.10.032. doi: 10.1016/j.biortech.2010.10.032.

[26]Sohel; M.I. and M. Jack; Efficiency improvements by geothermal heat integration in a lignocellulosic biorefinery. Bioresource Technology 2010. 101 p. 9342-9347. doi: 10.1016/j.biortech.2010.07.011.

[27]Dincer; I. and M.A. Rosen; Exergy: energy; environment and sustainable development. 2007: Elsevier.

[28]DiPippo; R.; Second Law assessment of binary plants generating power from low-temperature geothermal fluids. Geothermics; 2004. 33(5): p. 565-586. doi: 10.1016/j.geothermics.2003.10.003.

Citeringar i Crossref