Slaughterhouse Waste Co-Digestion - Experiences from 15 Years of Full-Scale Operation

A. E. W Ek
Swedish Biogas International Korea Co., Seoul, Republic of Korea

S. Hallin
Dept. of Biogas R & D, Tekniska Verken i Linköping AB, Sweden

L. Vallin
Dept. of Biogas R & D, Tekniska Verken i Linköping AB, Sweden

A. Schnürer
Dept. of Microbiology, Swedish University of Agricultural Sciences, Uppsala, Sweden

M. Karlsson
Dept. of Biogas R & D, Tekniska Verken i Linköping AB, Sweden \ Dept. of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden

Ladda ner artikelhttp://dx.doi.org/10.3384/ecp1105764

Ingår i: World Renewable Energy Congress - Sweden; 8-13 May; 2011; Linköping; Sweden

Linköping Electronic Conference Proceedings 57:9, s. 64-71

Visa mer +

Publicerad: 2011-11-03

ISBN: 978-91-7393-070-3

ISSN: 1650-3686 (tryckt), 1650-3740 (online)


At Tekniska Verken in Linköping AB (TVAB) there is a long time experience of handling and producing biogas from large volumes of slaughterhouse waste. Experiences from research and development and plant operations have lead to the implementation of several process improving technological/biological solutions. We can in this paper describe how the improvements have had several positive effects on the process; including energy savings; better odor control; higher gas quality; increased organic loading rates and higher biogas production with maintained process stability. In addition; it is described how much of the process stability in anaerobic digestion of slaughter house waste relates to the plant operation; which allow the microbiological consortia to adapt to the substrate. Since digestion of proteinaceous substrates like slaughterhouse waste lead to high ammonia loads; special requirements in ammonia tolerance are placed on the microbiota of the anaerobic digestion. Biochemical assays revealed that the main route for methane production proceed through syntrophic acetate oxidation; which require longer retention times than methane production by acetoclastic methanogens. Thus; the long retention time of the plant; accomplished by a low dilution of the substrate; is a vital component of the process stability when treating high protein substrates like slaughterhouse waste.


Anaerobic digestion; co-digestion; full-scale; slaughterhouse waste; syntrophic acetate oxidation


[1] Edström M.; Nordberg Å.; Thyselius L. Anaerobic treatment of animal byproducts from slaughterhouses at laboratory and pilot scale. Applied Biochemistry and Biotechnology; 109 (13); 2003; pp. 127 - 138. doi: 10.1385/ABAB:109:1-3:127.

[2] European Community. Regulation (EC) No. 1774/2002 of the European Parliament and of the Council laying down health rules concerning animal by-products not intended for human consumption. Official Journal; L 273; 2002; pp. 1 - 95.

[3] Hejnfelt A. and Angelidaki; I. Anaerobic digestion of slaughterhouse by-products. Biomass and Bioenergy 33 (8); 2009; pp. 1046 - 1054. doi: 10.1016/j.biombioe.2009.03.004.

[4] Salminen E.; Einola J.; Rintala J. Characterisation and anaerobic batch degradation of materials accumulating in anaerobic digesters treating poultry slaughterhouse waste. Environ. Technol. 22 (5); 2001; pp. 577 - 585. doi: 10.1080/09593332208618261.

[5] Salminen E. and Rintala J. Semi-continuous anaerobic digestion of solid poultry slaughterhouse waste: effect of hydraulic retention time and loading. Water Research 36 (13); 2002; pp. 3175 - 3182. doi: 10.1016/S0043-1354(02)00010-6.

[6] Zinder S. H. Microbiology of Anaerobic Conversion of Organic Wastes to Methane: Recent Developments. ASM news; 50 (7); 1984.

[7] Ochieng’ Otieno F. A. Anaerobic digestion of wastewaters with high strength sulphates. Discovery and Innovation 8 (2); 1996; pp. 143 - 150.

[8] Chen Y.; Cheng J. J.; Creamer K. S. Inhibition of anaerobic digestion process: A review. Bioresource Technology 99 (10); 2008; pp. 4044 - 4064. doi: 10.1016/j.biortech.2007.01.057.

[9] Jiunn-Jyi L.; Yu-You L.; Noike; T. Influences of pH and moisture content on the methane production in high-solids sludge digestion. Water Research 31 (6); 1997; pp. 1518 - 1524. doi: 10.1016/S0043-1354(96)00413-7.

[10] Tada C.; Yang Y.; Hanaoka T.; Sonoda A.; Ooi K.; Sawayama S. Effect of natural zeolite on methane production for anaerobic digestion of ammonium rich organic sludge. Bioresource Technology 96 (4); 2005; pp. 459 - 464. doi: 10.1016/j.biortech.2004.05.025.

[11] Nordell E.; Hallin S.; Johansson M.; Karlsson M. The diverse response on degradation rate of different substrates upon addition of zeolites. Third International Symposium on Energy from Biomass and Waste; Venice; Italy; 2010. ISBN 978-88-6265 -008-3.

[12] Siegrist H.; Vogt D.; Garcia-Heras J.L.; Gujer W. Mathematical model for meso- and thermophilic anaerobic sewage sludge digestion. Environmental Science and Technology; 36 (5); 2002; pp. 1113 - 1123. doi: 10.1021/es010139p.

[13] Schnürer A. and Nordberg Å. Ammonia; a selective agent for methane production by syntrophic acetate oxidation at mesophilic temperature. Water Science and Technology 57 (5); 2008; pp. 735 - 740. doi: 10.2166/wst.2008.097.

[14] Hellman J.; Ek A. E. W.; Sundberg C.; Johansson M; Svensson B. H. and Karlsson M. Mechanisms of increased methane production through re-circulation of magnetic biomass carriers in an experimental continuously stirred tank reactor. 12th World Congress on anaerobic digestion; Guadalajara; Mexico; 2010.

[15] URL: http://microdrive.phosdev.se/index.php?page=Companies

[16] Tafdrup S. Centralized biogas plants combine agricultural and environmental benefits with energy production. Water Science and Technology 30 (12); 1994; pp. 133 - 141.

[17] Alvarez R. and Lidén G. Semi-continuous co-digestion of solid slaughterhouse waste; manure; and fruit and vegetable waste. Renewable Energy 33 (4); 2008; pp. 726 - 734. doi: 10.1016/j.renene.2007.05.001.

[18] Deublein D. and Steinhauser A. Biogas from waste and renewable sources. Weinheim; Germany. Wiley-VCH; 2008. doi: 10.1002/9783527621705.

[19] Vallin L; Christiansson A.; Arnell M.; Undén P. D2.2 Operational experiences of cost effective production in Linköping; Sweden. Biogasmax Integrated Project No. 019795; 2007.

[20] Ejlertsson J. (2005). Swedish Patent No SE 525 313.

[21] Holm S.; Ejlertsson J.; Carlson B. (2005). Swedish Patent No SE 526 875.

[22] Schnürer A.; Schink B.; Svensson B.H. Clostridium ultunense sp. nov.; a mesophilic bacterium oxidizing acetate in syntrophic relationship with a hydrogenotrophic methanogenic bacterium. International Journal of Systematic Bacteriology 46 (4); 1996; pp. 1145 - 1152. doi: 10.1099/00207713-46-4-1145.

[23] Schnürer A.; Zellner G.; Svensson B.H. Mesophilic syntrophic acetate oxidation during methane formation in different biogas reactors. FEMS Microbiology Ecology 29; 1999; pp. 249 - 261. doi: 10.1016/S0168-6496(99)00016-1.

[24] Karlsson M.; Roos S.; Schnürer A. Description of ‘Candidatus Syntrophicus schinkii’ an anaerobic; syntrophic acetate-oxidizing bacterium isolated from mesophilic digester operating at high concentration of ammonia. FEMS Microbiology Letters; 309 (1); 2010; pp. 100 – 104.

[25] Jetten M. S. M.; Stams A. J. M.; Zehnder A. J. B. Methanogenesis from acetate: A comparison of the acetate metabolism in Methanothrix soehngenii and Methanosarcina spp. FEMS Microbiology Letters; 88 (3-4); 1992; pp. 181 - 197. doi: 10.1111/j.1574-6968.1992.tb04987.x.

Citeringar i Crossref