Konferensartikel

Studies of the Anionic Micelles Effect on Photogalvanic Cells for Solar Energy Conversion and Storage in Sodium Lauryl Sulphate-Safranine-D-Xylose System

Prem Prakash Solanki
Department of Chemistry, Faculty of Science, Banaras Hindu University, India

K. M. Gangotri
Solar Energy Laboratory, Department of Chemistry, Jai Narain Vyas University, India

Ladda ner artikelhttp://dx.doi.org/10.3384/ecp110572807

Ingår i: World Renewable Energy Congress - Sweden; 8-13 May; 2011; Linköping; Sweden

Linköping Electronic Conference Proceedings 57:16, s. 2807-2814

Visa mer +

Publicerad: 2011-11-03

ISBN: 978-91-7393-070-3

ISSN: 1650-3686 (tryckt), 1650-3740 (online)

Abstract

The Sodium lauryl sulphate (NaLS) has been used as anionic micelle species; Safranine as photosensitizer and D-Xylose as electron donor for the enhancement of the electrical output and performance (storage capacity) of the photogalvanic cell with reduce the cost of construction for commercial viability. The photopotential and photocurrent generated were 893.0 mV and 207.0 µA; respectively. The observed conversion efficiency and the fill factor were 0.6800% and 0.3233; respectively at the power point of the cell. The photogalvanic cell can be used for 98.0 minutes in the dark.The effect of different parameters like concentration of micelles; photosensitizer and electron donor; variation of pH; light intensity and diffusion path length were observed. A current – voltage (i-V) characteristics of the photogalvanic cell was studied experimentally and a mechanism has also been proposed for the generation of the photocurrent. All observed results of the system were lower in absence of the micelles species.

Nyckelord

Photogalvanic cell; Micelles effect; Safranine; D-Xylose; Conversion efficiency

Referenser

[1] K. Becquerel; on electric effects under the influence of solar radiation; C. R. Acad. Sci.; 9; 1839; 561

[2] E. K. Rideal; and E. G. Williams; The action of light on the ferrous iodine iodide equilibrium; J. Chem. Soc.;127; 1925; 258-269 doi: 10.1039/ct9252700258.

[3] E. Rabinowitch; The photogalvanic effect I: The photochemical properties of the thionine-iron system. J. Chem. Phy.; 8; 1940; 551-559 doi: 10.1063/1.1750711.

[4] Wendell M. Graven; Robert E. Salomon; and George B. Adams; Photogalvanic and photovoltaic effects with anodized zirconium and niobium electrodes; At. Energy Comm. TID-6514; 1960; 45-45

[5] D. E. Hall; William D. K. Clark; J. A Eckert; N. N Lichtin and P. D.Wildes; A photogalvanic cell with semiconductor anode; Ame. Ceramic. Soc. Bull.; 56(4); 1977; 408

[6] O. Alfredo; P. Georgina and P. J. Sebasteian; Electron transfer via organic dye for solar energy conversion; Solar Energy Materials & Solar Cells; 59; 1990; 137-143

[7] M. Mukhopadhyay and B. B. Bhowmik; Kinetics of photoinduced electron transfer in a phptoelectrochemical cell consisting of thiazine dyes and Triton X-100 surfactant; J. Photochem. Photobiol. A: Chem.; 69; 1992; 223-227 doi: 10.1016/1010-6030(92)85281-X.

[8] J. Bisquert; D. Cahen; G. Hodes; S. Riihle and A. Zaban; Physical chemical principles of photovoltaic conversion with nanoparticles; mesoporous dye-sensitized solar cells; J. physical chemistry B; 108; 2004; 8106-8118 doi: 10.1021/jp0359283.

[9] G. J. Meyer; Molecular appraaches to solar energy conversion with coordination compounds anchored to semiconductor surfaces; Inorganic Chemistry; 44; 2005; 6852-6864 doi: 10.1021/ic0505908.

[10] S. C. Ameta; S. Khamesra; M. Bala and K. M. Gangotri; Use of micelles in photogalvanic cell for solar energy conversion and storage; Phill. J Sc.; 119(4) 1990; 371-373

[11] S. Khamesra; S. Lodha; N. K. Jain and S. C. Ameta; Use of micelles in photogalvanic cell for solar energy conversion and storage: azur C-glucose system; Polish Journal of Chemistry; 65(2-3); 1991; 473-448

[12] S. Pramila and K. M. Gangotri; Use of anionic micelles in photogalvanic cells for solar energy conversion and storage: Dioctylsulfosuccinate–Mannitol–Safranine system; Energy Sources; Part A.; 29; 2007; 1253-1257 doi: 10.1080/00908310600625103.

[13] K. M. Gangotri and P. Gangotri; Studies of the micellar effect on photogalvanics: Solar energy conversion and storage–EDTA–Safranine O-Tween-80 system; Energy & Fuels; 23; 2009; 2767-2772 doi: 10.1021/ef9000709.

[14] K. R. Genwa and Mahaveer; Photogalvanic cell: A new approach for green and sustainable chemistry; Solar Energy Mat. & Solar Cells; 92(5) 2008; 522-529 doi: 10.1016/j.solmat.2007.10.010.

[15] A. K. Jana and B. B. Bhowmik; Enhancement in power output of solar cell consisting of mixed dye; J. Photochem. and Photobio. A; 110; 1997; 41-46 doi: 10.1016/S1010-6030(97)00155-X.

[16] K. M. Gangotri and C. Lal; Studies in photogalvanic effect and mixed dye system: EDTA-Methylene blue-Toluidine blue system; Int. J. Energy Res.; 24; 2000; 365-371 doi: 10.1002/(SICI)1099-114X(20000325)24:4<365::AID-ER593>3.0.CO;2-I.

[17] C. Lal; Use of mixed dyes in a photogalvanic cell for solar energy conversion and storage: EDTA – thionine – Azur B system; J. Power Sources; 164(2); 2007; 926–930 doi: 10.1016/j.jpowsour.2006.11.020.

[18] S. Dube; Simultaneous use of two reductants in a photogalvanic cell for solar-energy conversion and storage; Int. J. Energy Res.; 17(4); 1993; 311-314 doi: 10.1002/er.4440170408.

[19] K. M. Gangotri and V. Indora; Studies in the photogalvanic effect in mixed reductants system for solar energy conversion and storage: Dextrose and EDTA-Azur A System; Solar Energy; 84; 2010; 271-276 doi: 10.1016/j.solener.2009.11.007.

[20] K. R. Genwa; Arun Kumar and Abhilasha Sonel; Photogalvanic solar energy conversion: study with photosensitizers Toluidine Blue and Malachite Green in presence of NaLS; Applied Energy; 86; 2009; 1431-1436 doi: 10.1016/j.apenergy.2008.11.026.

[21] K. M. Gangotri and P. Gangotri; Studies of the micellar effect on photogalvanics: Solar energy conversion and storage–EDTA–Safranine O-CTAB system; The Arabian Journal for Science and Engineering; 35(1A); 2010; 19-28

[22] S. Yadav and C. Lal; Photogalvanic cells as a device for solar energy conversion and storage: An EDTA-New Methylene blue and Safranine O system; Energy Sources; Part A; 32; 2010; 1028-1039

[23] K. M. Gangotri and M. K. Bhimwal; Study the performance of photogalvanic cells for solar energy conversion and storage: Rose Bengal-D Xylose-NaLS system; Solar Energy; 84(7); 2010; 1294-1300 doi: 10.1016/j.solener.2010.04.006.

[24] K. M. Gangotri P. P. Solanki and M. K. Bhimwal; Use of anionic micelles in photogalvanic cells for solar energy conversion and storage storage: Sodium lauryl sulphate-Mannose-Brilliant cresyl blue system; Energy Sources: Party A; 2010; accepted.

[25] K. M. Gangotri and P. P. Solanki; Use of Sodium lauryl sulphate as a surfactant in photogalvanic cell for solar energy conversion and storage: Sodium lauryl sulphate-Methylene blue-Mannose system; Energy Sources: Party A; 2010; accepted.

Citeringar i Crossref