Konferensartikel

Charge Transient and Electrochemical Measurements as a Tool for Characterization and Degradation Study of Organic Semiconductors - PMPSis and MEH-PPV

V. Nadazdy
Institute of Physics, Slovak Academy of Sciences, Bratislava, Slovakia

K. Gmucova
Institute of Physics, Slovak Academy of Sciences, Bratislava, Slovakia

S. Lanyi
Institute of Physics, Slovak Academy of Sciences, Bratislava, Slovakia

F. Schauer
Department of Electronics and measurement, Tomas Bata University, Zlin, Czech Republic

I. Kuritka
Department of Electronics and measurement, Tomas Bata University, Zlin, Czech Republic

Ladda ner artikelhttp://dx.doi.org/10.3384/ecp110572830

Ingår i: World Renewable Energy Congress - Sweden; 8-13 May; 2011; Linköping; Sweden

Linköping Electronic Conference Proceedings 57:19, s. 2830-2837

Visa mer +

Publicerad: 2011-11-03

ISBN: 978-91-7393-070-3

ISSN: 1650-3686 (tryckt), 1650-3740 (online)

Abstract

This contribution deals with application of several techniques based on charge transient contactless measurements (isothermal charge transient spectroscopy - IQTS); and by electrochemical methods of double step voltcoulometry and cyclic voltammetry; two complementary methods; which are potentially suitable for obtaining information about bulk relaxation and transport processes and the structure of electronic localized states and their basic parameters. Both methods were tested by two well known polymers; the first; Poly[methylphenylsilylene] and the second Poly(p-phenylene vinylene. The results were explained both in terms of bulk relaxation ant transport processes; trap parameters and the influence of UV degradation. The metastability in reconstruction of dangling bonds ensuing after the UV degradation due to the Si-Si s conjugated bond scission and its ability to reconstruct after the thermal anneal was again found in accord with the previous results.

Nyckelord

Organic semiconductors characterization; Electron structure; Transient charge method; Electrochemical method

Referenser

[1] F. Schauer; Space-charge-limited photoconductivity in polymers; Czech. J. Phys. 49; 1999; p. 871. doi: 10.1023/A:1021209728473.

[2] J. Steiger; R. Schmechel; H. von Seggern; Synthet. Metals 129; 2002; p. 1. doi: 10.1016/S0379-6779(02)00012-7.

[3] A.J. Campbell; D.D.C. Bradley; E. Werner; W. Brutting; Organic Electr. 1; 2000; p. 21. doi: 10.1016/S1566-1199(00)00004-5.

[4] Y.S. Yang; S.H. Kim; J. Lee; H.Y. Chu; L. Do; H. Lee; J. Oh; T. Zyung; Appl. Phys. Lett. 80; 2002; p. 1595. doi: 10.1063/1.1459117.

[5] C. Renaud; T.P. Nguyen; J. Appl. Phys. 107; 2010; p. 124505. doi: 10.1063/1.3428962.

[6] I. Thurzo; H. Mendez; D.R.T. Zahn; phys. stat. sol (a) 202; 2005; p. 1994.

[7] P.J. Kulesza; J.M. Cox; Electroanalysis 10; 1998; p. 73. doi: 10.1002/(SICI)1521-4109(199802)10:2<73::AID-ELAN73>3.0.CO;2-K.

[8] I. Thurzo; K. Gmucová; Rev. Sci. Instrum. 65; 1994; p. 2244. doi: 10.1063/1.1144734.

[9] Š. Lányi; V. Nádaždy; Ultramicroscopy 110; 2010; p. 685.

[10] K. Gmucová; M. Weis; M. Della Pirriera; J. Puigdollers; phys. stat. sol. (a) 206; 2009; p. 1404.

[11] I. Thurzo; K. Gmucová; J. Orlický; J. Pavlásek; Rev. Sci. Instrum. 70; 1999; p. 3723. doi: 10.1063/1.1149984.

Citeringar i Crossref