Fabrication of Annealing-Free High Efficiency and Large Area Polymer Solar Cells by Roller Painting Process

Jae Woong Jung
Department of Materials Science and Engineering, Seoul National University, Seoul, Korea

Won Ho Ja
Department of Materials Science and Engineering, Seoul National University, Seoul, Korea

Ladda ner artikelhttp://dx.doi.org/10.3384/ecp110572838

Ingår i: World Renewable Energy Congress - Sweden; 8-13 May; 2011; Linköping; Sweden

Linköping Electronic Conference Proceedings 57:20, s. 2838-2845

Visa mer +

Publicerad: 2011-11-03

ISBN: 978-91-7393-070-3

ISSN: 1650-3686 (tryckt), 1650-3740 (online)


The polymer solar cells were fabricated by a novel solution coating process; the roller painting. The roller painted film composed of poly(3-hexylthiophene) (P3HT) and [6;6]-phenyl-C61-butyric acid methyl ester (PCBM) has smoother surface than the spin coated film. Since the roller painting is accompanied with shear and normal stresses and is also a slow drying process; the process induces effectively crystallization of P3HT and PCBM. Both crystalline P3HT and PCBM in the roller painted active layer contribute to enhanced and balanced charge carrier mobility. Consequently; the roller painting process results in higher power conversion efficiency (PCE) of 4.6% as compared to that of the spin coating (3.9%). Furthermore; the annealing-free polymer solar cell (PSC) with high PCE were fabricated by the roller painting process with addition of a small amount of 1;8-octanedithiol. Since the addition of 1;8-octanedithiol induces phase separation between P3HT and PCBM and the roller painting process induces crystallization of P3HT and PCBM; the PCE of roller painted PSC is achieved up to 3.8% without post-annealing.


Roller Painting; Thin Films; Polymer Solar Cells; Device Performance


[1] C. J. Brabec; N. S. Sariciftci; J. C. Hummelen; Plastic Solar Cells; Adv. Funct. Mater. 11; 2001; pp. 15-26. doi: 10.1002/1616-3028(200102)11:1<15::AID-ADFM15>3.0.CO;2-A.

[2] G. Yu; A. J. Heeger; Charge separation and photovoltaic conversion in polymer composites with internal donor/acceptor heterojunctions; J. Appl. Phys. 78; 1995; pp. 4510-4515. doi: 10.1063/1.359792.

[3] P. Schilinsky; U. Asawapirom; U. Scherf; M. Biele; C. J. Brabec; Influence of the Molecular Weight of Poly(3-hexylthiophene) on the Performance of Bulk Heterojunction Solar Cells; Chem. Mater. 17; 2005; pp. 2175-2180. doi: 10.1021/cm047811c.

[4] Y. K. Kim; S. Cook; S. M. Tuladhar; S. A. Choulis; J. Nelson; J. R. Durrant; D. D. C. Bradley; M. Giles; I. McCulloch; C. S. Ha; M. H. Ree; A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene:fullerene solar cells; Nat. Mater. 5; 2006; pp. 197-203. doi: 10.1038/nmat1574.

[5] P. W. M. Blom; V. D. Mihailetchi; L. J. A. Koster; D. E. Markov; Device Physics of Polymer:Fullerene Bulk Heterojunction Solar Cells; Adv. Mater. 19; 2007; pp. 1551-1566. doi: 10.1002/adma.200601093.

[6] G. Dennler; M. C. Scharber; C. J. Brabec; Polymer-Fullerene Bulk-Heterojunction Solar Cells; Adv. Mater. 21; 2009; pp. 1323-1338. doi: 10.1002/adma.200801283.

[7] J. W. Jung; J. U. Lee; W. H. Jo; High-Efficiency Polymer Solar Cells with Water-Soluble and Self-Doped Conducting Polyaniline Graft Copolymer as Hole Transport Layer; J. Phys. Chem. C 114; 2010; pp. 633-637. doi: 10.1021/jp9083844.

[8] G. Li; V. Shrotriya; J. Huang; Y. Yao; T. Moriarty; K. Emery; Y. Yang; . High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends; Nat. Mater. 4; 2005; pp. 864-868. doi: 10.1038/nmat1500.

[9] Ma; C. Yang; X. Gong; K. Lee; A. J. Heeger; Thermally Stable; Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology; Adv. Funct. Mater. 15; 2005; pp. 1617-1622. doi: 10.1002/adfm.200500211.

[10] M. Campoy-Quiles; T. Ferenczi; T. Agostinelli; P. G. Etchegoin;Y. Kim; T. D. Anthopoulos; P. N. Stavrinou; D. D. C. Bradley; J. Nelson; Morphology evolution via self-organization and lateral and vertical diffusion in polymer:fullerene solar cell blends; Nat. Mater. 7; 2008; pp. 158-164. doi: 10.1038/nmat2102.

[11] F. C. Krebs; Processing and preparation of polymer and organic solar cells; Sol. Energy Mater. Sol. Cells 93; 2009; pp. 394-412. doi: 10.1016/j.solmat.2008.10.004.

[12] F. C. Krebs; Roll-to-roll fabrication of monolithic large-area polymer solar cells free from indium-tin-oxide; Sol. Energy Mater. Sol. Cells 93; 2009; pp. 1636-1641. doi: 10.1016/j.solmat.2009.04.020.

[13] Gunes; H. Neugebauer; N. S. Sariciftci; Conjugated Polymer-Based Organic Solar Cells Chem. Rev. 107; 2007; pp. 1324-1338. doi: 10.1021/cr050149z.

[14] C. J. Brabec; F. Padinger; J. C. Hummelen; R. A. Janssen; N. S. Sariciftci; Realization of large area flexible fullerene - conjugated polymer photocells: A route to plastic solar cells; Synth. Met. 102; 1999; pp. 861-864. doi: 10.1016/S0379-6779(98)00366-X.

[15] P. Schilinsky; C. Waldauf; C. J. Brabec; Performance Analysis of Printed Bulk Heterojunction Solar Cells; Adv. Funct. Mater. 16; 2006; pp. 1669-1672. doi: 10.1002/adfm.200500581.

[16] C. N. Hoth; S. A. Choulis; P; Schilinsky; C. J. Brabec; . On the effect of poly(3-hexylthiophene) regioregularity on inkjet printed organic solar cells; J. Mater. Chem. 19; 2009; pp. 5398-5404. doi: 10.1039/b823495g.

[17] D. Vak; S. Kim; J. Jo; S. Oh; S. Na; J. Kim; D. Kim; Fabrication of organic bulk heterojunction solar cells by a spray deposition method for low-cost power generation; Appl. Phys. Lett. 91; 2007; 081102. doi: 10.1063/1.2772766.

[18] C. N. Hoth; R. Steim; P. Schilinsky; S. A Choulis; S. F. Tedde; O. Hayden; C. J. Brabec; Topographical and morphological aspects of spray coated organic photovoltaics ; Organ. Electron. 10; 2009; pp. 587-593. doi: 10.1016/j.orgel.2009.02.010.

[19] R. Green; A. Morpha; A. J. Ferguson; N. Kopidakis; G. Rumbles; S. E. Shaheen; Performance of bulk heterojunction photovoltaic devices prepared by airbrush spray deposition; Appl. Phys. Lett. 92; 2008; 33301. doi: 10.1063/1.2836267.

[20] K. X. Steirer; M. O. Reese; B. L. Rupert; N. Kopidakis; D. C. Olson; R. T. Collins; D. S. Ginley; Ultrasonic spray deposition for production of organic solar cells; Sol. Energy Mater. Sol. Cells 93; 2009; pp. 447-453. doi: .

F. C. Krebs, M. Jorgensen, K. Norrman, O. Hagemann, J. Alstrup, T. D. Nielsen, J. Fyenbo, K. Larsen, J. Kristensen, A complete process for production of flexible large area polymer solar cells entirely using screen printing—First public demonstration, Sol. Energy Mater. Sol. Cells 93, 2009, pp. 422-441.

[22] S. Kim, S. Na, J. Jo, G. Tae, D. Kim, Efficient Polymer Solar Cells Fabricated by Simple Brush Painting, Adv.Mater. 19, 2007, pp. 4410-4415.

[23] J. W. Jung, W. H. Jo, . Annealing-Free High Efficiency and Large Area Polymer Solar Cells Fabricated by a Roller Painting Process, Adv. Funct. Mater. 20, 2010, pp. 2355-2363.

[24] G. Derue, S. Coppee, S. Gabriele, M. Surin, V. Geskin, F, Monteverde, P. Leclere, R. Lazzaroni, P. Damman, Nanorubbing of Polythiophene Surfaces, J. Am. Chem. Soc. 127, 2005, pp. 8018-8019.

[25] H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P. Herwig, D. M. De Leeuw, Two-dimensional charge transport in self-organized, high-mobility conjugated polymers, Nature 401, 1999, pp. 685-688.

[26] R. Osterbacka, C. P. An, X. M. Jiang, Z. V. Vardeny, Two-Dimensional Electronic Excitations in Self-Assembled Conjugated Polymer Nanocrystals, Science 287, 2000, pp. 839-842.

[27] M. Kim, B. Kim, J. Kim, Effective Variables To Control the Fill Factor of Organic Photovoltaic Cells, ACS Appl. Mater. & Interfaces 1, 2009, pp. 1264-1269.

[28] G. Lu, L. Li, X. Yang, Creating a Uniform Distribution of Fullerene C60 Nanorods in a Polymer Matrix and its Photovoltaic Applications, Small 4, 2008, pp. 601-606.

Citeringar i Crossref