Pulse and Direct Current Electrodeposition of Zinc Oxide Layers for Solar Cells with Extra Thin Absorbers

N. Volkova
National Aerospace University “Kharkiv Aviation Institute”, Kharkiv, Ukraine

G. Khrypunov
National Technical University “Kharkiv Polytechnic Institute”, Kharkiv, Ukraine

N. Klochko
National Technical University “Kharkiv Polytechnic Institute”, Kharkiv, Ukraine

V. Kopach
National Technical University “Kharkiv Polytechnic Institute”, Kharkiv, Ukraine

V. Lyubov
National Technical University “Kharkiv Polytechnic Institute”, Kharkiv, Ukraine

K. Klepikova
National Technical University “Kharkiv Polytechnic Institute”, Kharkiv, Ukraine

Ladda ner artikelhttp://dx.doi.org/10.3384/ecp110572853

Ingår i: World Renewable Energy Congress - Sweden; 8-13 May; 2011; Linköping; Sweden

Linköping Electronic Conference Proceedings 57:22, s. 2853-2860

Visa mer +

Publicerad: 2011-11-03

ISBN: 978-91-7393-070-3

ISSN: 1650-3686 (tryckt), 1650-3740 (online)


The feasibility of one-dimensional (1D) nanostructured zinc oxide array pulse plating has been presented. An effect of the electrolyte composition; deposition regime and subsequent annealing on structure and optical properties of the electrodeposited ZnO layers has been approved by X-ray diffraction and spectrophotometric analysis. We have determined that for obtaining of ZnO arrays with strong (002) preferable growth orientation in the c-axis direction it is necessary to diminish adsorption of hydrogen and Cl--ions. It has been shown that such conditions are created in electrolyte that contains 0.05 M Zn(NO3)2 and 0.1 M NaNO3 during electrodeposition on FTO-coated glass substrates in pulse plating regime with rectangular impulses of cathode potential (20 ms on-time at Uon = -1.4 V and 30 ms off-time at Uoff = -0.8 V). Therefore; in this work we for the first time have demonstrated the successful growth of 1D ZnO nanostructures by pulse plating without using of templates. The novel electrodeposition technique gives possibilities for the manufacture of the ZnO arrays suitable for solar cells with extra thin absorbers.


Electrodeposition; Zinc oxide; Pulse plating


[1] K. Govender; D. S. Boyle; P. B. Kenway. P. O’Brein; J. Mater. Chem. 14; 2004; pp. 2575-2591. doi: 10.1039/b404784b.

[2] C. X. Xu; X. W. Sun; Z. L. Dong; G. P. Zhu; Y. P. Cui; Appl. Phys. Lett. 88; 2006; pp. 093101. doi: 10.1063/1.2179133.

[3] X. Hu; Y. Masuda; T. Ohji; K. Kato; Journal of the Ceramic Society of Japan 116 (3); 2008; pp. 384-388. doi: 10.2109/jcersj2.116.384.

[4] D. Pradhan; M. Kumar; Y Ando; K. T. Leung; J. Phys. Chem. C 112; 2008; pp. 7093-7096. doi: 10.1021/jp800799b.

[5] A.M. Peró; P. Ravirajan; K. Govender; D.S. Boule; P. O’Brein; D. D. C. Bradley; J. Nelson; J. R. Durrant; J. Mater. Chem. 16; 2006; pp. 2088-2096. doi: 10.1039/b602084d.

[6] X. Ju; W. Feng; X. Zhang; V. Kittichungchit; T. Hori; H. Moritou; A. Fujii; M. Ozaki; Solar Energy Materials and Solar Cells 93; 2009; pp.1562-1567. doi: 10.1016/j.solmat.2009.04.007.

[7] E. Michaelis; D. Wöhrle; J. Rathousky; M. Wark; Thin Solid Films 497; 2006; pp.163-169. doi: 10.1016/j.tsf.2005.10.072.

[8] D. Pradhan; K. T. Leung; J. Phys. Chem. C 112; 2008; pp. 1357-1374. doi: 10.1021/jp076890n.

[9] Y. Fukunaka; K. Kuribauashi; Space Utiliz. Res. 24; 2008; pp. 27-30.

[10] M. Gupta; D. Pinisetty; J.C. Flake; J. J. Spivey; Journal of the Electrochemical Society 157; 2010; pp. D473-D478. doi: 10.1149/1.3456627.

[11] Structura i phizicheskie svojstva tverdogo tela /edited by L.S. Palatnik; Kiev; Visshaja shkola; 1983; p.284 [in Russian].

[12] A. Malik; B.C. Ray; Thin Solid Films 517; 2009; pp. 6612-6616. doi: 10.1016/j.tsf.2009.04.054.

[13] Y. Y. Lurje; Spravochnik po analiticheskoy himiji; Moscow; Himija; 1989; p.448 [in Russian].

Citeringar i Crossref