Design; Fabrication and Testing of Micro-Channel Solar Cell Thermal (MCSCT) Tiles in Indoor Condition

Sanjay Agrawal
Centre for Energy Studies, Indian Institute of Technology Delhi, New Delhi, India

S. C. Solanki
Centre for Energy Studies, Indian Institute of Technology Delhi, New Delhi, India

G. N. Tiwari
Centre for Energy Studies, Indian Institute of Technology Delhi, New Delhi, India

Ladda ner artikelhttp://dx.doi.org/10.3384/ecp110572916

Ingår i: World Renewable Energy Congress - Sweden; 8-13 May; 2011; Linköping; Sweden

Linköping Electronic Conference Proceedings 57:30, s. 2916-2923

Visa mer +

Publicerad: 2011-11-03

ISBN: 978-91-7393-070-3

ISSN: 1650-3686 (tryckt), 1650-3740 (online)


In this paper design; fabrication and testing of micro-channel solar cell thermal (MCSCT) tiles has been discussed. Solar simulator for an indoor testing of micro-channel solar cell thermal tiles has also been developed. Fabricated MCSCT tile consists of single solar cell; micro- channel and fan for extraction of heat from bottom of solar cell. Single MCSCT tile has been termed as case-I. Similarly; two MCSCT tiles which are connected in series have been termed as case-II. The performance evaluation in terms of electrical efficiency; thermal gain; overall thermal energy and overall exergy of both cases has been carried out in indoor conditions on various intensities. It has been also found that the electrical efficiency is higher in case-I as compared to case-II. On the other hand the thermal out put of case-II is higher than case-I on same intensity and mass flow rate. It has been found that the average electrical and thermal efficiency of newly designed and fabricated MCSCT tile is 12.4% and 35.7% respectively. This economical solar simulator can be used by manufactures for testing of different type of photovoltaic tile as well as photovoltaic modules


Full Photovoltaic thermal tile; Micro-channel; Solar simulator


[1] H. A. Zondag; D. W. de Vries; W. G. J. van Helden; R. J. C. van Zolingen; A. A. van Steenhoven; The thermal and electrical yield of a PV thermal collector; Solar Energy; 72 (2); 2002; pp.113–128. doi: 10.1016/S0038-092X(01)00094-9.

[2] P.G. Charalambous; G.G. Maidment; S.A. Kalogirou; K. Yiakoumetti; Photovoltaic Thermal (PVT) collectors: A review; Applied Thermal Energy 27; 2007; pp. 275- 286. doi: 10.1016/j.applthermaleng.2006.06.007.

[3] K. Sopian; K.S. Yigit; H. T. Liu; S. Kakac ; T. N. Veziroglu; Performance analysis of photovoltaic thermal air heaters; Energy Conversion and Management 37;1996; pp. 1657-1670. doi: 10.1016/0196-8904(96)00010-6.

[4] J. Prakash; Transient analysis of photovoltaic thermal solar collectors for cogeneration of electricity and hot air/water; Energy Conversion and Management 35; 1994; pp. 967-972. doi: 10.1016/0196-8904(94)90027-2.

[5] H. P Garg; R. K Agarwal; A. K. Bhargava ;Study of a hybrid solar system-solar air heater combined with solar cells; Energy Conversion and Management 31; 1991; pp. 471-479. doi: 10.1016/0196-8904(91)90028-H.

[6] C. H. Cox III; P. Raghuraman; Design considerations for flat-plate photovoltaic/thermal collectors; Solar Energy 35; 1985; pp. 237-242. doi: 10.1016/0038-092X(85)90102-1.

[7] E. Erdil; M. Ilkan; F . Egelioglu ; Renewable energy resources as an alternative to modify the load curve in Northern Cyprus; Energy 33; 2008; pp.1241 -2008. doi: 10.1016/j.energy.2008.03.005.

[8] B. J. Huang; T. H. Lin; W. C. Hung; F S. Sun;Performance evaluation of solar photovoltaic/thermal systems; Solar Energy 70; 2001; pp 443–448. doi: 10.1016/S0038-092X(00)00153-5.

[9] J. K. Tonui; Y. Tripanagnostopoulos ; Air-cooled PVT solar collectors with lowcost performance improvements; Solar Energy 81; 2007;pp. 498–511. doi: 10.1016/j.solener.2006.08.002.

[10] K. Sopian; H. T. Liu; S. Kakac; T. Veziroglu; Performance of a Double Pass Photovoltaic Thermal Solar Collector Suitable for Solar Drying Systems; Energy Conversion and Management 41; 2000; pp. 353 – 365. doi: 10.1016/S0196-8904(99)00115-6.

[11] Niccolo; C. Giancarlo; V. Francesco; Design; development and performance monitoring of a photovoltaic-thermal (PVT) air collector; Renewable energy 33; 2007;pp. 914-927.

[12] Dincer; The role of exergy in energy policy making; Energy Policy 30; 2002; pp. 137-149. doi: 10.1016/S0301-4215(01)00079-9.

[13] S. Agrawal; G. N. Tiwari; Energy and exergy analysis of hybrid micro-channel photovoltaic thermal module; Solar Energy; 85; 2011; pp 356-370. doi: 10.1016/j.solener.2010.11.013.

[14] G. N. Tiwari; Solar Energy: Fundamentals; Design; Modeling and Applications. Narosa Publishing House New Delhi; 2004.

[15] J. A. Duffie; W. A. Beckman; Solar Engineering of Thermal Processes; John Wiley and Sons; New York; 1991.

Citeringar i Crossref