Semi-Virtual Laboratory Design for Photovoltaic Generator Characterization Performance

Hocine Belmili
Photovoltaic system, Unit of Development of Solar Equipments (UDSE), Algiers

Mourad Haddadi
Laboratory of communication devices and photovoltaic conversion (LCDPVC), Algiers

Salah Med Aitcheikh
Laboratory of communication devices and photovoltaic conversion (LCDPVC), Algiers

Ahmed Chikouche
Photovoltaic system, Unit of Development of Solar Equipments (UDSE), Algiers

Ladda ner artikelhttp://dx.doi.org/10.3384/ecp110572930

Ingår i: World Renewable Energy Congress - Sweden; 8-13 May; 2011; Linköping; Sweden

Linköping Electronic Conference Proceedings 57:32, s. 2930-2937

Visa mer +

Publicerad: 2011-11-03

ISBN: 978-91-7393-070-3

ISSN: 1650-3686 (tryckt), 1650-3740 (online)


This paper present a study of the photovoltaic generator (PVG) performance. It basing on comparison between characterizations obtained in real time test and simulated ones using mathematical models. This study is evaluated by the design of a semi-virtual laboratory; which is composed on a hardware support based on the developed data acquisition system in real operating conditions and a software support based on mathematical models descriptions. This laboratory permits to identify PVG parameters using correlation between measurements and simulated characteristics.


Simulation; photovoltaic generator; characterization; performance; hardware; software


[1] Test Method for Photovoltaic Module Power Rating; FSEC Standard 202-05; Research institute of the university of central Florida; May 2005

[2] David L. King; William E. Boyson and al; “Application and Validation of a New PV Performance Characterization Method”; 26th IEEE Photovoltaic Specialists Conference; September 29 October 3; 1997; Anaheim; California.

[3] W. Durisch ;J. Urban and G. Smestad; “Characterisation of solar cells and modules under actual operating conditions” California 93955-8001; California; U.S.A. WREC 1996

[4] Ali Nacer celik and Nasir Acikgoz; “Modeling and experimental verification of the operating current of mono-crystalline photovoltaic modules using four and five parameter models”; Elsevier; Applied energy pp 84 (2007)1-15. doi: 10.1016/j.apenergy.2006.04.007.

[5] D. S. H. Chan; J. R. Philips and J. C. H. Phang; “A comparative study of extraction methods for solar cell model parameters”; Solid-State Electronics Vol. 29; No. 3. pp. 329-337; 1986. doi: 10.1016/0038-1101(86)90212-1.

[6] D. L. King et al; Photovoltaic system performance characterization methodologies; NREL/CD-520-33586; 543-546.

[7] A. Hunter Fanney; and al; «Comparison of Photovoltaic Module Performance Measurements”. 152 / Vol. 128; MAY 2006 Copyright © 2006by ASME Transactions of the ASME

[8] D.L. King; J.A. Kratochvil; W.E. Boyson; and W.I. Bower; “Field experience with a new performance characterization procedure for photovoltaic arrays” ; 2nd World Conference and Exhibition on Photovoltaic Solar Energy Conversion; 6-10 July 1998; Vienna; Austria.

[9] http://www.sandia.gov/pv/

[10] Hocine Belmili; Salah Med Aitcheikh; Mourad Haddadi; Cherif Larbas “Design and development of a data acquisition system for photovoltaic modules characterization” Elsevier Renewable energy 35(2010)1484-1492. doi: 10.1016/j.renene.2010.01.007.

[11] Piedallu; C. and Gégout; J.C. “Multiscale computation of solar radiation for predictive vegetation Modeling”. Annals of Forest Science; 64: 899-909. 2007. doi: 10.1051/forest:2007072.

[12] TE 500 CR+ Modules. www.total-energie.com.

Citeringar i Crossref