Konferensartikel

Evaluating the Greenhouse Gas Impact from Biomass Gasification Systems in Industrial Clusters - Methodology and Examples

Kristina M. Holmgren
Chalmers University of Technology, Inst of Energy and Environment dep. of Heat and Power Technology, Gothenburg, Sweden \ IVL Swedish Environmental Research Institute Ltd, Gothenburg, Sweden

Thore Bernsson
Chalmers University of Technology, Inst of Energy and Environment dep. of Heat and Power Technology, Gothenburg, Sweden

Eva Andersson
CIT Industriell Energi, Gothenburg, Sweden

Tomas Rydberg
IVL Swedish Environmental Research Institute Ltd, Gothenburg, Sweden

Ladda ner artikelhttp://dx.doi.org/10.3384/ecp110573098

Ingår i: World Renewable Energy Congress - Sweden; 8-13 May; 2011; Linköping; Sweden

Linköping Electronic Conference Proceedings 57:13, s. 3098-3105

Visa mer +

Publicerad: 2011-11-03

ISBN: 978-91-7393-070-3

ISSN: 1650-3686 (tryckt), 1650-3740 (online)

Abstract

Biomass gasification is identified as one of the key technologies for producing biofuels for the transport sector and can also produce many other types of products. Biomass gasification systems are large-scale industrial systems and it is important to evaluate such systems from economic; environmental and synergetic perspectives before implementation. The objective of this study is to define a methodology for evaluating the greenhouse gas (GHG) impact of different biomass gasification systems and to exemplify the methodology. The ultimate purpose of the methodology is to evaluate the GHG performance of different biomass gasification systems integrated in industrial clusters. A life cycle perspective is applied.

Most biomass gasification systems are multiproduct systems; simultaneously producing biofuels; heat at different temperatures and pressures and electricity. The value; in economic terms and in terms of GHG emissions; is well defined for some products (e.g. biofuels); whereas for other products (such as heat and electricity) it is more uncertain and in some cases dependent on time and location.

Nyckelord

Greenhouse gas impact assessment; Biomass gasification; System analysis

Referenser

[1] Cherubini; F.; Strømman; A.H. 2011. Life cycle assessment of bioenergy systems: State of the art and future challenges. Bioresource Technology; vol. 102; pp 437-451. doi: 10.1016/j.biortech.2010.08.010.

[2] Wetterlund; E.; Pettersson; K. & Magnusson M. 2010. Implications of system expansion for the assessment of well to wheel CO2 emissions from biomass-based transportation. International Journal of Energy Research; vol. 34 pp. 1136-1154. doi: 10.1002/er.1633.

[3] ISO 14044:2006 Environmental management – Life cycle assessment – Requirements and guidelines.

[4] IPCC (2007) Climate change 2007: The physical science basis. Contribution of working group 1 to the fourth assessment report of the International Panel on Climate Change. Cambridge University Press; Cambridge; UK

[5] ISO 14040:2006 Environmental management – Life cycle assessment – Principles and Framework.

[6] Axelsson; E.; Harvey; S.; Berntsson T. 2009. A tool for creating energy market scenarios for evaluation of investments in energy intensive industry. Energy; 34; pp. 2069-2074. doi: 10.1016/j.energy.2008.08.017.

[7] Ericson K. & Börjesson; P. 2008. Potential utilization of biomass in production of electricity; heat and transportation fuels including energy combines –Regional analyses and examples. Lund University. Report no 64. (In Swedish; English summary).

[8] Zah; R.; Böni; H.; Gauch; M.; Hischier; R.; Lehmann; M.; Wäger; P. 2007. Life Cycle Assessment of energy products. Environmental assessment of biofuels. Executive summary. EMPA – Technology and Society Lab. Switzerland.

[9] UNEP 2009. Towards sustainable production and use of resources: Assessing biofuels.

[10] Cherubini; F.; Bird; N.D.; Cowie; A.; Jungmeier; G.; Schlamadinger; B.; Woess-Gallasch; S. 2009. Energy and greenhouse gas based LCA of biofuels and bioenergy systems: Key issues; ranges & recommendations. Resources; Conservation and Recycling; 53; 434-447. doi: 10.1016/j.resconrec.2009.03.013.

[11] Clift; R. & Brandao; M 2008. Carbon storage and timing of emissions. Briefing Note dated 20th October 2008. Centre for Environmental Strategy; University of Surrey.

[12] PAS 2050:2008. Specification for the assessment of the life cycle greenhouse gas emissions of goods and services. BSI October 2008. ISBN 978 0 580 50978 0.

[13] Axelsson E.; Overland; C.; Nilsson; K. & Sandoff; A. 2008. Bioenergikombinat i fjärrvärmesystem. Svensk Fjärrvärme Rapport 2009:11. (In Swedish).

[14] Börjesson; M.; & Ahlgren E.O. 2010. Biomass gasification in cost-optimized district heating systems – A regional modeling analysis. Energy Policy vol. 38 pp. 168-180. doi: 10.1016/j.enpol.2009.09.001.

[15] Nouri; S.; Kaggerud; K. 2006. Waste-to-plastics: process alternatives. Chalmers University of Technology; Gothenburg; Sweden. CPM-report 2006:10.

[16] Edwards; R.; Larivé; J-F. Mahieu; V. & Rouveirolles; P. 2007. Well-to-wheel analysis of future automotive fuels and powertrains in the European context. Well-to-wheels Report. Version 2c; March 2007. Available at http://ies.jrc.ec.europa.eu/WTW

[17] Uppenberg; S.; Almemark; M.; Brandel.; M.; Lindfors; L.-G.; Marcus; H.-O.; Stripple; H.; Wachtmeister; A. Zetterberg; L. 2001. Miljöfaktabok för bränslen. Bakgrundsinformation och Teknisk bilaga. IVL report B1334B-2; Stockholm; Sweden. (In Swedish).

[18] Gode; J.; Martinsson F.; Hagberg; L.; Öman; A. & Höglund; J. Miljöfaktaboken 2010 Emission factors for fuels; electricity; heat and transport in Sweden. Värmeforsk; Sweden. (In prep.)

[19] Lindholm; E.-L.; Berg; S.; Hansson; P.A. 2010. Energy efficiency and the environmental impact of harvesting stumps and logging residues. Eur J For Res vol. 129; pp. 1223-1235. doi: 10.1007/s10342-010-0412-1.

[20] Liptow C.; Tillman; A.-M.; 2009. Comparative life cycle assessment of polyethylene based on sugar cane and crude oil. Chalmers University of technology; Dep. of Energy and Environment; div. of Environmental Systems Analysis. Report no 2009:14

[21] Kirkinen; J.; Palosuo; T.; Holmgren; K.; & Savolainen; I. 2008. Greenhouse impact due to the use of combustible fuels: life cycle viewpoint and relative radiative forcing commitment. Environmental Management vol. 42; pp. 458-469. doi: 10.1007/s00267-008-9145-z.

[22] Lindholm; E.-L.; 2010. Energy use and environmental impact of roundwood and forest fuel production in Sweden. Doctoral Thesis. Swedish University of Agricultural Sciences.

[23] Harding; K.G.; Dennis; J.S.; von Blottnitz; H. & Harrison; S.T.L. 2007. Environmental analysis of plastic production processes: Comparing petroleum-based polypropylene and polyethylene with biologically-based poly-ß-hydroxybutric acid using life cycle analysis. Journal of Biotechnology vol. 130; pp. 57-66. doi: 10.1016/j.jbiotec.2007.02.012.

[24] Larson; E. D.; Jin; H.; & Celik; F.E. 2005. Gasification-based fuels and electricity from Biomass; with and without carbon capture and storage. Princeton Environmental Institute; Princeton University; Princeton; NJ; October 2005; 77 pp.

[25] Holmgren; K.; Hagberg; L. 2009. Life cycle assessment of climate impact of Fischer- Tropsch diesel based on peat and biomass. IVL report B1833.

[26] Andersson; E.; Harvey; S. 2007. Comparison of pulp-mill-integrated hydrogen production from gasified black liquor with stand-alone production from gasified biomass. Energy; 32 (4) pp. 399-405. doi: 10.1016/j.energy.2006.06.021.

[27] Cherubini; F.; Jungmeier; G. 2010. LCA of a biorefinery concept producing bioethanol; bioenergy and chemicals from switchgrass. Int J Life Cycle Assess; vol. 15; pp. 53-66. doi: 10.1007/s11367-009-0124-2.

Citeringar i Crossref