A Hybrid Solar-Gas Air Conditioning System Based on Adsorption and Chilled Water Storage

Antonio P. F. Leite
Solar Energy Laboratory, Federal University of Paraiba, Joao Pessoa-PB, Brazil

Douglas B. Riffel
Mechanical Engineering Department, Federal University of Sergipe, Aracaju-SE, Brazil

Celina M. C. Ribeiro
Solar Energy Laboratory, Federal University of Paraiba, Joao Pessoa-PB, Brazil

Francisco A. Belo
Solar Energy Laboratory, Federal University of Paraiba, Joao Pessoa-PB, Brazil

Paulo V. S. R. Domingos
Solar Energy Laboratory, Federal University of Paraiba, Joao Pessoa-PB, Brazil

Daniel Sarmento
Solar Energy Laboratory, Federal University of Paraiba, Joao Pessoa-PB, Brazil

Manoel B. Soares
Solar Energy Laboratory, Federal University of Paraiba, Joao Pessoa-PB, Brazil

Leonaldo J. L. Nascimento
Solar Energy Laboratory, Federal University of Paraiba, Joao Pessoa-PB, Brazil

Ladda ner artikelhttp://dx.doi.org/10.3384/ecp110573969

Ingår i: World Renewable Energy Congress - Sweden; 8-13 May; 2011; Linköping; Sweden

Linköping Electronic Conference Proceedings 57:39, s. 3969-3976

Visa mer +

Publicerad: 2011-11-03

ISBN: 978-91-7393-070-3

ISSN: 1650-3686 (tryckt), 1650-3740 (online)


This paper presents constructive aspects and preliminary experimental results of an adsorptive chiller as part of a 20 kW central air conditioning unit for providing thermal comfort in a set of rooms that comprises an area of 110 m2. Some simulation results of the air conditioner regeneration system are also presented. The cooling system is basically made up of a cold-water storage tank – supplied by an activated carbon-methanol chiller; and a hot-water storage tank – fed by a field of high efficient solar collectors with complementary heat by natural gas. The adsorber – a compact heat exchanger containing the activated carbon – was conceived and constructed in four modules; in order to allow heat and mass recovery. Other components are the same existing on conventional central air conditioners; as a condenser; an evaporator and a cooling tower. Constructive details of the collector’s field; the adsorbers and the regenerating storage component are shown. The solar system is a 120 m2 collection area field composed by 76 units of a flat plate collector covered with a high efficient transparent insulation. Results obtained from a multi-objective optimization based on a statistic modeling shown that – for a specific cooling power of 120 W/kg of adsorbent – the chiller’s COP can reach 0.6. With this COP value; and considering the mean value of the total daily irradiation in João Pessoa (7°8’S; 34°50’WG); we can expected a solar energy cover fraction of 70%; for a typical summer day. This scenario is expected for the following operation temperatures: 30°C for the condenser; 7°C for the evaporator and 105°C at the start of the regeneration process. For an acclimatization period of 8 hours (9 to 17 h); the main dimensioning parameters were: 504 kg of activated carbon; 180 liters of methanol; 7;000 liters of hot water; 10;300 liters of chilled water with its temperature varying in the fan-coil from 1°C to 14°C.


Solar-gas adsorptive chiller; Thermal storage; Numerical simulation


[1] A.P.F. Leite; F.A. Belo; M.M. Martins; D.B. Riffel; Central air conditioning based on adsorption and solar energy; Applied Thermal Engineering; Volume 31; Issue 1; January 2011; Pages 50-58; ISSN 1359-4311.

[2] D.B. Riffel; A.P.F. Leite; F.A. Belo; Simulação do aporte térmico de coletores solares planos em um tanque cilíndrico estratificado. In: I Congresso Brasileiro de Energia Solar; Fortaleza; CE; 2007.

[3] J.A. Duffie and W.A. Beckman; Solar Engineering of Thermal Processes; J. Wiley & Sons; 1980.

[4] D.B. Riffel; Estudo Teórico e Experimental da Dinâmica e da Otimização de Refrigeradores Térmicos por Adsorção; Tese de Doutorado (Eng. Mecânica); PPGEM/UFPB; 2008.

[5] D.B. Riffel; U. Wittstadt; F.P. Schmidt; T. Nunez; F.A. Belo; A.P.F. Leite; F. Ziegler; Transient modeling of an adsorber using finned-tube heat exchanger; International Journal of Heat and Mass Transfer; Volume 53; Issues 7-8; March 2010; Pages 1473-1482; ISSN 0017-9310.

[6] A.P.F. Leite; F.A. Belo; M.B. Grilo; R.R.D. Andrade; Avaliação experimental de um adsorvedor multitubular coberto com material isolante transparente; Anais do VI Congresso Iberoamericano de Engenharia Mecânica (CIBEM6); Coimbra; Portugal; 15-18 Oct.; 2003; Vol. I; pp. 253-258.

[7] A.P.F. Leite; F.A. Belo; M.B. Grilo; R.R.D. Andrade; F. Meunier; An improved multi-tubular solar collector applied to adsorption refrigeration; Proc. ISES Solar World Congress; Orlando; Florida; USA; 6-12 Aug.; 2005.

[8] P.V.S. Domingos; D.B. Riffel; A.C.R. Veloso; C.M.C. Ribeiro; F.A. Belo; A.P.F. Leite; Simulação numérica do sistema de regeneração de um ar condicionado solar por adsorção baseado em um campo de coletores planos de alta eficiência; IV Conferência Latino Americana de Energia Solar (IV ISES_CLA) y XVII Simposio Peruano de Enegía Solar (XVII-SPES); Cuzco; Peru; 1-5.11.2010.

[9] R.R.D. de Andrade; M.M. Machado; A. Lourenço; F.A. Belo; A.P.F. Leite; Avaliação experimental de uma cobertura isolante composta por material transparente para uso em coletor solar; V Congresso Nacional de Engenharia Mecânica – COBEM 2008; 25 a 28 de agosto; Salvador/Bahia; Brasil.

[10] D.B. Riffel; F.A. Belo; A.P.F. Leite; Otimização de chiller adsortivo solar por modelagem estatística; Climatização & Refrigeração; Abril de 2010; pags. 38 a 45.

[11] D.B. Riffel; F.A. Belo; A.P.F. Leite; Heat and mass recovery in an activated carbon-methanol adsorptive chiller; Proceedings of COBEM 2009 - 20th International Congress of Mechanical Engineering; November 15-20; 2009; Gramado; RS; Brazil.

Citeringar i Crossref