Konferensartikel

Wind Energy Resources of the South Baltic Sea

Charlotte Hasager
Risø National Laboratory for Sustainable Energy, DTU, Roskilde, Denmark

Jake Badger
Risø National Laboratory for Sustainable Energy, DTU, Roskilde, Denmark

Ferhat Bingöl
Risø National Laboratory for Sustainable Energy, DTU, Roskilde, Denmark

Niels-Erik Clausen
Risø National Laboratory for Sustainable Energy, DTU, Roskilde, Denmark

Andrea Hahmann
Risø National Laboratory for Sustainable Energy, DTU, Roskilde, Denmark

Ioanna Karagali
Risø National Laboratory for Sustainable Energy, DTU, Roskilde, Denmark

Merete Badger
Risø National Laboratory for Sustainable Energy, DTU, Roskilde, Denmark

Alfredo Peña
Risø National Laboratory for Sustainable Energy, DTU, Roskilde, Denmark

Ladda ner artikelhttp://dx.doi.org/10.3384/ecp110574050

Ingår i: World Renewable Energy Congress - Sweden; 8-13 May; 2011; Linköping; Sweden

Linköping Electronic Conference Proceedings 57:1, s. 4050-4057

Visa mer +

Publicerad: 2011-11-03

ISBN: 978-91-7393-070-3

ISSN: 1650-3686 (tryckt), 1650-3740 (online)

Abstract

The wind resources of the South Baltic Sea in the area between latitude 54 and 58 degrees North and longitude 10 to 22 degrees East are quantified from state-of-the-art methods using a combination of long-term and short-term mesoscale modeling output and satellite-based methods. The long-term overall statistics based on the NCEP/NCAR re-analysis dataset will be used in combination with more than one year of real time simulations using the Weather Research and Forecasting (WRF) mesoscale model operated at Risø DTU. The satellite Synthetic Aperture Radar (SAR) ocean wind maps and scatterometer ocean wind maps from QuikSCAT will be used to evaluate the wind resource calculation. The advantage of including SAR wind maps for evaluation is the finer spatial detail. In some regions; the mesoscale model may not fully resolve the wind-producing atmospheric structures. The satellites; however; only provides information at 10 m above sea level; whereas the mesoscale model provide results at several heights.

Nyckelord

Offshore wind; mesoscale model; satellite data

Referenser

[1] I. Troen;; E. L.Petersen; European Wind Atlas; Risø National Laboratory: Roskilde; 1989.

[2] H.Frank; O. Rathmann; N. Mortensen; L. Landberg The Numerical Wind Atlas; the KAMM/WAsP Method;Risø-R-1252(EN); Roskilde; Denmark; 2001.

[3] N. Mortensen; D. N. Heathfield; L. Landberg; O. Rathmann; I. Troen; E.L.Petersen Wind Atlas Analysis and Wind Atlas Analysis and Application program:WAsP 7.0 Help Facility;ISBN 87-550-2667-2; Risø National Laboratory: Roskilde; 2000.

[4] A. Sathe; S.E. Gryning; A. Peña; Comparison of the Atmospheric Stability and Wind Profiles at two Wind Farm Sites over a long marine fetch in the North Sea. Wind Energy 2010; (in press).

[5] A. Peña; C.B. Hasager; S.E. Gryning; M.Courtney; I. Antoniou; T. Mikkelsen. Offshore wind profiling using light detection and ranging measurements. Wind Energy 2009; 12; 105-124. doi: 10.1002/we.283.

[6] C.B.Hasager; A. Peña; M.B.Christiansen; P.Astrup;M.Nielsen;F.Monaldo;D.Thompson; P.Nielsen.Remote sensing observation used in offshore wind energy. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 2008; 1 (1); 67-79. doi: 10.1109/JSTARS.2008.2002218.

[7] A.Peña; S.E.Gryning. Charnock’s roughness length model and non-dimensional wind profiles over the sea. Boundary-Layer Meteorology 2008; 128; 191-203. doi: 10.1007/s10546-008-9285-y.

[8] A.Peña; S.E.Gryning; C.B.Hasager. Measurements and Modelling of the Wind Speed Profile in the Marine Atmospheric Boundary Layer. Boundary-Layer Meteorology 2008; 129 (3); 479-495. doi: 10.1007/s10546-008-9323-9.

[9] W.T.Liu;W.Tang Equivalent neutral wind; National Aeronautics and Space Administration; Jet Propulsion Laboratory; California Institute of Technology; National Technical Information Service; distributor: 1996.

[10] H.Hersbach; A.Stoffelen;S.de Haan.An improved C-band scatterometer ocean geophysical model function:CMOD5. J. Geophysical Research 2007; 112 (C03006).

[11] A.Stoffelen; D.L.T.Anderson. Wind retrieval and ERS-1 scatterometer radar backscatter measurements. Advance Space Research 1993; 13; 53-60. doi: 10.1016/0273-1177(93)90527-I.

[12] M.B.Christiansen;C.B.Hasager;D.R.Thompson;F.Monaldo.Ocean winds from synthetic aperture radar. In Ocean remote Sensing: Recent Techniques and Applications.; Niclos; R.; Caselles; V.; Eds.; Research Singpost Editorial: 2008; pp 31-54.

[13] R.C.Beal; G.S.Young;F. Monaldo; D.R.Thompson; N.S.Winstead; C.A.Schott High resolution wind monitoring with Wide Swath SAR: A user’s guide; U.S. Department of Commerce: Washington; DC; 2005.pp. 1-155.

[14] F.Monaldo;D.R.Thompson;N.S.Winstead;W.Pichel;P.Clemente-Colón;M.B.Christiansen. Ocean wind field mapping from synthetic aperture radar and its application to research and applied problems. Johns Hopkins Apl. Tech. Dig. 2005; 26; 102-113.

[15] F.Monaldo. The Alaska SAR demonstration and near-real-time synthetic aperture radar winds. John Hopkins APL Technical Digest 2000; 21; 75-79.

[16] M.Badger; J.Badger;M.Nielsen;C.B.Hasager;A.PeñaWind class sampling of satellite SAR imagery for offshore wind resource mapping. J. Applied Meteorology and Climatology 2010; 49;12;2474-2491. doi: 10.1175/2010JAMC2523.1.

[17] Hasager; C. B.; Badger; M.; Peña; A.; Larsén; X. G. SAR-Based Wind Resource Statistics in the Baltic Sea. Remote Sensing 2011; 3;1;117-144.

Citeringar i Crossref