Konferensartikel

Impact of Climate Change on Wheat Production for Ethanol in Southern Saskatchewan; Canada

Hong Wang
Semiarid Prairie Agricultural Research Centre, Agriculture and Agri-Food Canada, Canada

Yong He
Semiarid Prairie Agricultural Research Centre, Agriculture and Agri-Food Canada, Canada \ Department of Soil and Water Sciences, Resources and Environmental Sciences College, China Agricultural University, China

Budong Qian
Eastern Cereal and Oilseed Research Centre, Agriculture and Agri-Food Canada, Canada

Brian McConkey
Semiarid Prairie Agricultural Research Centre, Agriculture and Agri-Food Canada, Canada

Herb Cutforth
Semiarid Prairie Agricultural Research Centre, Agriculture and Agri-Food Canada, Canada

Tom McCaig
Semiarid Prairie Agricultural Research Centre, Agriculture and Agri-Food Canada, Canada

Grant McLeod
Semiarid Prairie Agricultural Research Centre, Agriculture and Agri-Food Canada, Canada

Robert Zentner
Semiarid Prairie Agricultural Research Centre, Agriculture and Agri-Food Canada, Canada

Con Campbell
Eastern Cereal and Oilseed Research Centre, Agriculture and Agri-Food Canada, Canada

Ron DePauw
Semiarid Prairie Agricultural Research Centre, Agriculture and Agri-Food Canada, Canada

Reynald Lemke
Saskatoon Research Centre, Agriculture and Agri-Food Canada, Saskatoon, Saskatchewan, Canada

Kelsey Brandt
Semiarid Prairie Agricultural Research Centre, Agriculture and Agri-Food Canada, Canada

Tingting Liu
Semiarid Prairie Agricultural Research Centre, Agriculture and Agri-Food Canada, Canada \ Renmin University of China, Beijing, China

Xiaobo Qin
Semiarid Prairie Agricultural Research Centre, Agriculture and Agri-Food Canada, Canada \ Institute of Agro-Environment and Sustainable Development, Chinese Academy of Agriculture Sciences, China

Gerrit Hoogenboom
Washington State University, USA

Jeffrey White
USDA ARS, ALARC, USA

Tony Hunt
University of Guelph, Canada

Ladda ner artikelhttp://dx.doi.org/10.3384/ecp11057644

Ingår i: World Renewable Energy Congress - Sweden; 8-13 May; 2011; Linköping; Sweden

Linköping Electronic Conference Proceedings 57:10, s. 644-651

Visa mer +

Publicerad: 2011-11-03

ISBN: 978-91-7393-070-3

ISSN: 1650-3686 (tryckt), 1650-3740 (online)

Abstract

This study assessed the impact of climate change on wheat production for ethanol in southern Saskatchewan; Canada. The DSSAT-CSM model was used to simulate biomass and grain yield under three climate change scenarios (IPCC SRES A1B; A2 and B1) in the 2050s. Synthetic 300-yr weather data were generated by the AAFC stochastic weather generator for the baseline period (1961-1990) and scenarios. Compared to the baseline; all three scenarios increase precipitation every month except July and August and June (A2 only); when less rains are projected. Annual air temperature is increased by 3.2; 3.6 and 2.7 oC for A1B; A2 and B1; respectively. The model predicted increases in biomass by 28; 12 and 16% without the direct effect of CO2 and 74; 55 and 41% with combined effect (climate and CO2) for A1B; A2 and B1; respectively. Similar increases were found for yield. However; the occurrence of heat shock (>32oC) will increase during grain filling under climate change conditions and could cause severe yield reduction; which is not simulated by DSSAT-CSM; therefore; the yield could be overestimated. Several measures such as early seeding must be taken to avoid heat damage and take the advantage of projected increase in precipitation.

Nyckelord

Climate change; Wheat; Bioenergy crop; Heat shock; Seeding date

Referenser

[1] P.E. Thornton; H. Hasenauer; M.A. White; Simultaneous estimation of daily solar radiation and humidity from observed temperature and precipitation: an application over complex terrain in Austria; Agricultural and Forest Meteorology 104; 2000; pp. 255–271. doi: 10.1016/S0168-1923(00)00170-2.

[2] A. Bootsma; R. De Jong; Estimates of seeding dates of spring wheat on the Canadian Prairies from climate data; Canadian Journal of Plant Science 68; 1988; pp. 513–517. doi: 10.4141/cjps88-062.

[3] S.M. McGinn; A. Touré; O.O. Akinremi; D.J. Major; A.G. Barr; Agroclimate and crop response to climate change in Alberta; Canada; Outlook On Agriculture 28(1); 1999; pp. 19–28.

[4] J.W. Jones; G. Hoogenboom; C.H. Porter; K.J. Boote; W.D. Batchelor; L.A. Hunt; P.W. Wilkens; U. Singh; A.J. Gijsman; J.L. Ritchie; The DSSAT cropping system model; European Journal of Agronomy 18; 2003; pp. 235–265. doi: 10.1016/S1161-0301(02)00107-7.

[5] A.P. Moulin; H.J. Beckie; Evaluation of the CERES and EPIC models for predicting spring wheat grain yield; Canadian Journal of Plant Science 73; 1993; pp. 713–719. doi: 10.4141/cjps93-093.

[6] A.C. Chipanshi; E.A. Ripley; R.G. Lawford; Large–scale simulation of wheat yields in a semi–arid environment using a crop–growth model; Agricultural Systems 59; 1999; pp. 57–66. doi: 10.1016/S0308-521X(98)00082-1.

[7] H. Wang; G.N. Flerchinger; R. Lemke; K. Brandt; T. Goddard; C. Sprout; Improving SHAW long–term soil moisture prediction for continuous wheat rotations; Alberta; Canada; Canadian Journal of Plant Science 90; 2010; pp. 37–53.

[8] H. Wang; H. Cutforth; T. McCaig; G. McLeod; K. Brandt; R. Lemke; T. Goddard; C. Sprout; Predicting the time to 50% seedling emergence in wheat using a Beta model; NJAS – Wageningen Journal of Life Sciences 57; 2009; pp. 65–71.

[9] H. Wang; H. Cutforth; P.R. Bullock; R.M. DePauw; T. McCaig; G. McLeod; K. Brandt; G.J. Finlay; Testing a nonlinear model for simulating the time of seedling emergence of wheat; Canadian Biosystems Engineering 51; 2009; pp. 4.1–4.6.

[10] H. Wang; H.W. Cutforth; R. DePauw; T. McCaig; G. McLeod; K. Brandt; X. Qin; Modeling leaf appearance rate for Canada Western Red Spring wheat cultivars; Canadian Journal of Plant Science 90; 2010; pp. 399–402. doi: 10.4141/CJPS09151.

[11] K. Sosulski; F. Sosulski; Wheat as a feedstock for fuel ethanol; Applied Biochemistry and Biotechnology 45(6); 1994; pp. 169–180. doi: 10.1007/BF02941796.

[12] Y.W. Jame; H.W. Cutforth; Simulating the effects of temperature and seeding depth on germination and emergence of spring wheat; Agricultural and Forest Meteorology 124; 2004; pp. 207–218. doi: 10.1016/j.agrformet.2004.01.012.

[13] R.P. Zentner; C.A. Campbell; F. Selles; B.G. McConkey; P.G. Jefferson; R. Lemke; Cropping frequency; wheat classes and flexible rotations: Effects on production; nitrogen economy; and water use in a Brown Chernozem; Canadian Journal of Plant Science 83; 2003. pp. 667–680. doi: 10.4141/P02-160.

[14] N. Nakicenovic; R. Swart; Emissions Scenarios IPCC Special Report; 2000. Nebojsa Nakicenovic and Rob Swart (Eds.) – Cambridge University Press; UK; 2000; pp. 570.

[15] B.D. Qian; S. Gameda; H. Hayhoe; R. De Jong; A. Bootsma; Comparison of LARS–WG and AAFC–WG stochastic weather generators for diverse Canadian climates; Climate Research 26; 2004; pp. 175–191. doi: 10.3354/cr026175.

[16] B.D. Qian; R. De Jong; J.Y. Yang; H. Wang; S. Gameda; Comparing the simulation of climate impacts on crop yields with observed and synthetic weather data; 2010. 2010 AGU Fall Meeting. 13–17 December; San Francisco; California; USA.

[17] W.J. Parton; J.A. Logan; A model for diurnal variation in soil and air temperature; Agricultural Meteorology 23; 1981; 205-216. doi: 10.1016/0002-1571(81)90105-9.

[18] SAS Institute; Inc.; SAS procedures guide. Version 8. SAS Institute; Inc.; Cary; NC; USA; 1999.

[19] I.P. Little; The relationship between soil pH measurements in calcium chloride and water suspensions; Australian Journal of Soil Research 30; 1992; pp. 587–92. doi: 10.1071/SR9920587.

[20] L.M. Arthur; The implication of climate change for agriculture in the prairie provinces; Climate Change Digest 88-01. 1988; Downsview; ON. Atmospheric Environment Service.

[21] T.N. McCaig; Temperature and precipitation effects on durum wheat grown in southern Saskatchewan for fifty years; Canadian Journal of Plant Science 77; 1997; pp. 215–223. doi: 10.4141/P96-144.

[22] I.F. Wardlaw; C. Blumenthal; O. Larroque; C.W. Wrigley; Contrasting effects of chronic heat stress and heat shock on kernel weight and flour quality in wheat;Functional Plant Biology 29; 2002; pp. 25–34. doi: 10.1071/PP00147.

[23] I.F. Wardlaw; C.W. Wrigley; Heat tolerance in temperate cereals: An overview; Australian Journal of Plant Physiology 21; 1994; pp. 695–703. doi: 10.1071/PP9940695.

[24] P.J. Stone; M.E. Nicolas; The effect of duration of heat stress during grain filling on two wheat varieties differing in heat tolerance: grain growth and fractional protein accumulation; Australian Journal of Plant Physiology 25; 1998; pp. 13–20. doi: 10.1071/PP96114.

[25] H. Wang; R. Lemke; T. Goddard; C. Sprout. Tillage and root heat stress in wheat in Central Alberta; Canadian Journal of Soil Science 87; 2007; pp. 3–10. doi: 10.4141/S06-016.

[26] T.R. Wheeler; P.Q. Craufurd; R.H. Ellis; J.R. Porter; P.V. Vara Prasad; Temperature variability and the yield of annual crops; Agriculture; Ecosystems & Environment 82; 2000; pp. 159–167. doi: 10.1016/S0167-8809(00)00224-3.

[27] K.N. Harker; G.W. Clayton; R.E. Blackshaw; J.T. O’Donovan; E.N. Johnson; Y. Gan; F.A. Holm; K.L. Sapsford; R.B. Irvine; R.C. Van Acker; Glyphosate–resistant wheat persistence in western Canadian cropping systems; Weed Science: November 2005; Vol. 53; No. 6; 2005; pp. 846–859.

[28] R.O. Ashley; D. Barondeau; H. Peterson; J. Larson; B. Rettinger; A survey of dormant–seeded Hard Red Spring Wheat fields in Southwest North Dakota; 2001. Annual Report. Dickinson Research Extension Center; http://www.ag.ndsu.nodak.edu/dickinso/

[29] M.A. Semenov; N.G. Halford; Identifying target traits and molecular mechanisms for wheat breeding under a changing climate; Journal of Experimental Botany 60(10); 2009; pp. 2791–2804. doi: 10.1093/jxb/erp164.

[30] S.D. Merrill; A.L. Black; A. Bauer; Conservation tillage effects root growth of dryland spring wheat under drought; Soil Science Society of America Journal 60; 1996; pp. 575–583. doi: 10.2136/sssaj1996.03615995006000020034x.

[31] H.W. Cutforth; B.G. McConkey; R.J. Woodvine; D.G. Smith; P.G. Jefferson; O.O. Akinremi; Climate change in the semiarid prairie of southwestern Saskatchewan: Late winter–early spring; Canadian Journal of Plant Science 79: 1999; 343–350. doi: 10.4141/P98-137.

[32] H. Harricharan and J. McKinlay; Frost Seeding - A Cheaper Alternative. 2010. Ministry of Agriculture; Food and Rural Affairs. Government of Ontario; Canada. http://www.omafra.gov.on.ca/english/crops/facts/98-071.htm.

Citeringar i Crossref