Konferensartikel

Thermodynamic and Dynamic Investigation for CO<sub>2</sub> Storage in Deep Saline Aquifers

Xiaoyan Ji
Division of Energy Engineering, Luleå University of Technology, Luleå, Sweden

Yuanhui Ji
Division of Energy Engineering, Luleå University of Technology, Luleå, Sweden

Chongwei Xiao
Petroleum Recovery Research Center, New Mexico Institute of Mining and Technology, New Mexico, USA

Ladda ner artikelhttp://dx.doi.org/10.3384/ecp11057652

Ingår i: World Renewable Energy Congress - Sweden; 8-13 May; 2011; Linköping; Sweden

Linköping Electronic Conference Proceedings 57:11, s. 652-659

Visa mer +

Publicerad: 2011-11-03

ISBN: 978-91-7393-070-3

ISSN: 1650-3686 (tryckt), 1650-3740 (online)

Abstract

Thermodynamic and dynamic investigations are needed to study the sequestration capacity; CO2 leakage; and environmental impacts. The results of the phase equilibrium and densities for CO2-sequestration related subsystems obtained from the proposed thermodynamic model on the basis of statistical associating fluid theory equation of state were summarized. Based on the equilibrium thermodynamics; preliminary kinetics results were also illustrated with chemical potential gradient as the driving force. The proposed thermodynamic model is promising to represent phase equilibrium and thermodynamic properties for CO2-sequestration related systems; i.e. CO2-(H2S)-H2O-ions (such as Na+; K+; Ca2+; Mg2+>; Cl-; CO3 2-); and the implementation of thermodynamic model into kinetics model to adjust the non-ideality of species is vital because of the high pressure for the investigation of the sequestration process.

Nyckelord

Carbon sequestration; CO2 storage; Thermodynamics; Dynamics; CO<sub>2</sub> diffusion

Referenser

[1] Y. H. Ji; X. Y. Ji; X. Feng; C. Liu; L. H. Lu; X. H. Lu; Progress in the study on the phase equilibria of the CO2-H2O and CO2-H2O-NaCl systems. Chinese Journal of Chemical Engineering 15(3); 2007; pp. 439-448. doi: 10.1016/S1004-9541(07)60105-0.

[2] Z. H. Duan; R. Sun; R. Liu; C. Zhu; Accurate thermodynamic model for the calculation of H2S solubility in pure water and brines. Energy & Fuels 21(4); 2007; pp. 2056-2065. doi: 10.1021/ef070040p.

[3] C. D. Yang; Y. G. Gu; Accelerated mass transfer of CO2 in reservoir brine due to density-driven natural convection at high pressures and elevated temperatures. Industrial & Engineering Chemistry Research 45(8); 2006; pp. 2430-2436. doi: 10.1021/ie050497r.

[4] J. J. Adams; S. Bachu; Equations of state for basin geofluids: algorithm review and intercomparison for brines. Geofluids; 2; 2002; pp. 257–271. doi: 10.1046/j.1468-8123.2002.00041.x.

[5] A. Riaz; M. A. Hesse; H. Tchelepi; F. M. Orr Jr.; Onset of convection in a gravitationally unstable; diffusive boundary layer in porous media. J. Fluid Mech.; 548; 2006; pp. 87–111. doi: 10.1017/S0022112005007494.

[6] V. Vilarrasa; D. Bolster; M. Dentz; S. Olivella; J. Carrera; Effects of CO2 compressibility on CO2 storage in deep saline aquifers. Transp. Porous Media; 85; 2010; pp. 619-639. doi: 10.1007/s11242-010-9582-z.

[7] J. J. Adams; S. Bachu; Equations of state for basin geofluids: algorithm review and intercomparison for brines. Geofluids; 2; 2002; pp. 257–271. doi: 10.1046/j.1468-8123.2002.00041.x.

[8] X. Y. Ji; S. P. Tan; H. Adidharma; M. Radosz; SAFT1-RPM approximation extended to phase equilibria and densities of CO2-H2O and CO2-H2O-NaCl systems. Industrial & Engineering Chemistry Research 44(22); 2005; pp. 8419-8427. doi: 10.1021/ie050725h.

[9] N. Spycher; K. Pruess; J. Ennis-King; CO2-H2O mixtures in the geological sequestration of CO2. I. Assessment and calculation of mutual solubilities from 12 to 100 degrees C and up to 600 bar. Geochimica et Cosmochimica Acta 67(16); 2003; pp. 3015-3031. doi: 10.1016/S0016-7037(03)00273-4.

[10] Z. D. Li; A. Firoozabadi; Cubic-Plus-Association Equation of State for Water-Containing Mixtures: Is "Cross Association" Necessary? AIChE Journal 55(7); 2009; pp. 1803-1813. doi: 10.1002/aic.11784.

[11] E. Perfetti; R. Thiery; J. Dubessy; Equation of state taking into account dipolar interactions and association by hydrogen bonding: II - Modelling liquid-vapour equilibria in the H2O-H2S; H2O-CH4 and H2O-CO2 systems. Chemical Geology 251(1-4); 2008; pp. 50-57. doi: 10.1016/j.chemgeo.2008.02.012.

[12] M. C. dos Ramos; C. McCabe; Modeling the phase behavior; excess enthalpies and Henry’s constants of the H2O + H2S binary mixture using the SAFT-VR plus D approach. Fluid Phase Equilibria 290(1-2); 2010; pp. 137-147. doi: 10.1016/j.fluid.2009.09.018.

[13] X. H. Tang; J. Gross; Modeling the phase equilibria of hydrogen sulfide and carbon dioxide in mixture with hydrocarbons and water using the PCP-SAFT equation of state. Fluid Phase Equilibria 293(1); 2010; pp. 11-21. doi: 10.1016/j.fluid.2010.02.004.

[14] X. Y. Ji; C. Zhu; Modelling of phase equilibria in the H2S-H2O system with statistical associating fluid theory. Energy & Fuels 24; 2010; pp. 6208-6213. doi: 10.1021/ef100847j.

[15] B. McPherson; W. S. Han; B. S. Cole; Two equations of state assembled for basic analysis of multiphase CO2 flow and in deep sedimentary basin conditions. Computers & Geosciences 34(5); 2008; pp. 427-444. doi: 10.1016/j.cageo.2007.05.017.

[16] S. P. Tan; X. Y. Ji; H. Adidharma; M. Radosz; Statistical associating fluid theory coupled with restrictive primitive model extended to bivalent ions. SAFT2: 1. Single salt plus water solutions. J. Phys. Chem. B 110(33); 2006; pp. 16694-16699. doi: 10.1021/jp0625107.

[17] X. Y. Ji; S. P. Tan; H. Adidharma; M. Radosz; Statistical associating fluid theory coupled with restrictive primitive model extended to bivalent ions. SAFT2: 2. Brine/seawater properties predicted. J. Phys. Chem. B 110(33); 2006; pp. 16700-16706. doi: 10.1021/jp062511z.

[18] X. Y. Ji; H. Adidharma; Ion-based SAFT2 to represent aqueous single- and multiple-salt solutions at 298.15 K. Ind. Eng. Chem. Res. 45(22); 2006; pp. 7719-7728. doi: 10.1021/ie060649y.

[19] X. Y. Ji; H. Adidharma; Ion-based statistical associating fluid theory (SAFT2) to represent aqueous single-salt solutions at temperatures and pressures up to 473.15 K and 1000 bar. Ind. Eng. Chem. Res. 46(13); 2007; pp. 4667-4677. doi: 10.1021/ie061535p.

[20] X. Y. Ji; H. Adidharma; Ion-based SAFT2 to represent aqueous multiple-salt solutions at ambient and elevated temperatures and pressures. Chemical Engineering Science 63(1); 2008; pp. 131-140. doi: 10.1016/j.ces.2007.09.010.

[21] Y. H. Ji; X. Y. Ji; X. H. Lu; Modeling Mass Transfer of CO2 in Brine at High Pressures by Chemical Potential Gradient. Fluid Phase Equilibria; submitted 2010.

[22] A. Valtz; A. Chapoy; C. Coquelet; P. Paricaud; D. Richon; Vapour-liquid equilibria in the carbon dioxide-water system; measurement and modelling from 278.2 to 318.2K. Fluid Phase Equilibria 226; 2004; pp. 333-344. doi: 10.1016/j.fluid.2004.10.013.

[23] R. Wiebe; V. L. Gaddy; The solubility of carbon dioxide in water at various temperatures from 12° to 40° and at pressures to 500 atmospheres. Critical phenomena. J. Am. Chem. Soc. 62; 1940; pp. 815-817. doi: 10.1021/ja01861a033.

[24] M. B. King; A. Mubarak; J. D. Kim; T. R. Bott; The mutual solubilities of water with supercritical and liquid carbon dioxide. Journal of Supercritical Fluids 5(4); 1992; pp. 296-302. doi: 10.1016/0896-8446(92)90021-B.

[25] J. Kiepe; S. Horstmann; K. Fischer; J. Gmehling; Experimental Determination and Prediction of Gas Solubility Data for CO2 + H2O Mixtures Containing NaCl or KCl at Temperatures between 313 and 393 K and Pressures up to 10 MPa. Industrial & Engineering Chemistry Research 41(17); 2002; pp. 4393-4398.

[26] S. Bando; F. Takemura; M. Nishio; E. Hihara; M. Akai; Solubility of CO2 in Aqueous Solutions of NaCl at (30 to 60) °C and (10 to 20) MPa. Journal of Chemical and Engineering Data 48(3); 2003; pp. 576-579. doi: 10.1021/je0255832.

[27] B. Rumpf; H. Nicolaisen; C. Ocal; G. Maurer; Solubility of carbon dioxide in aqueous solutions of sodium chloride: experimental results and correlation. Journal of Solution Chemistry 23(3); 1994; pp. 431-48. doi: 10.1007/BF00973113.

[28] K. S. Pitzer; J. C. Peiper; R. H. Busey; Thermodynamic properties of aqueous sodium chloride solutions. J. Phys. Chem. Ref. Data 13; 1984; pp. 1-102. doi: 10.1063/1.555709.

[29] B. M. Fabuss; A. Korosi; A. Huq; Densities of binary and ternary aqueous solutions of NaCl; Na2SO4; and MgSO4; of sea waters; and sea water concentrates. J. Chem. Eng. Data 11; 1966; pp. 325-31. doi: 10.1021/je60030a010.

[30] P. C. Gillespie; G. M. Wilson; Vapor-Liquid and Liquid-Liquid Equilibria: Water-Methane; Water-Carbon Dioxide; Water-Hydrogen Sulfide; Water-nPentane; Water-Methane-nPenatne; RR-48; Utah; 1982

Citeringar i Crossref