Mineral Sequestration for CCS in Finland and Abroad

Ron Zevenhoven
Åbo Akademi University, Thermal and Flow Engineering Laboratory, Åbo/Turku, Finland

Johan Fagerlund
Åbo Akademi University, Thermal and Flow Engineering Laboratory, Åbo/Turku, Finland

Ladda ner artikelhttp://dx.doi.org/10.3384/ecp11057660

Ingår i: World Renewable Energy Congress - Sweden; 8-13 May; 2011; Linköping; Sweden

Linköping Electronic Conference Proceedings 57:12, s. 660-667

Visa mer +

Publicerad: 2011-11-03

ISBN: 978-91-7393-070-3

ISSN: 1650-3686 (tryckt), 1650-3740 (online)


The long-term storage of CO2 using mineral sequestration is becoming increasingly interesting in many regions; especially where CO2 underground sequestration is considered impossible or unfeasible. Despite the recognised and documented advantages of CO2 mineral sequestration; twenty years of R&D work did not yet result in mature; economically viable technology that can be applied on a large scale. Lacking other CCS options while having access to large resources of suitable rock material; a route for carbonation of magnesium silicate mineral is currently being optimised in Finland. It involves the production of magnesium hydroxide; Mg(OH)2 from the mineral followed by carbonation of this in a pressurised fluidised bed reactor. Although the Mg(OH)2 production requires energy the consequent carbonation step is exothermic and the overall process could still be rendered energy neutral. Significant amounts of iron oxides are obtained as by-products. Carbonation levels of ~50% of several 100 µm diameter Mg(OH)2 particles were obtained within 10 minutes at pressures > 20 bar and temperatures up to 500ºC. This paper reports on the latest developments of the work; addressing also process energy efficiency. Also; the large-scale application of this in Finland and at the locations of project partners abroad is briefly addressed.


Carbon dioxide sequestration; Mineral carbonation


[1] IPCC. Special Report on Carbon Dioxide Capture and Storage. Metz; B.; Davidson; O.; de Coninck; H.C.; Loos; M.; Meyer; L.A. (Eds.) Cambridge University Press; 2005.

[2] Lackner; K S. A guide to CO2 sequestration. Science 300; 2003; pp. 677-1678. doi: 10.1126/science.1079033.

[3] Zevenhoven; R.; Fagerlund; J. Mineralisation of CO2 Chapter 16 in: Developments and innovation in CCS technology M. Maroto-Valer (Ed.); Woodhead Publishing Ltd.; Cambridge (UK); 2010; pp 433-462

[4] IEA. Carbon capture and storage – Progress and next steps. IEA/CSLF Report to the Muskoka 2010 G8 Summit. IEA; Paris; 2010; 39 pp.

[5] Delgado Torróntegui; M. Assessing the mineral carbonation science and technology M.Sc. Thesis ETH Zürich; Switzerland; 2010

[6] Zevenhoven; R.; Fagerlund; J.; Songok; J.K. CO2 mineral sequestration – developments towards large-scale application. Greenhouse Gases: Science and Technology; 2011; accepted / in press doi: 10.1002/ghg3.007

[7] Nduagu; E. Mineral carbonation: preparation of magnesium hydroxide [Mg(OH)2] from serpentinite rock; M.Sc. Thesis; Åbo Akademi University; Finland; 2008

[8] Fagerlund; J. Teir; S. Nduagu; E.; Zevenhoven; R. Carbonation of magnesium silicate mineral using a pressurized gas/solid process. Energia Procedia 1; 2009; pp. 4907-4914. doi: 10.1016/j.egypro.2009.02.321.

[9] Fagerlund; J.; Nduagu; E.; Romão; I.; Zevenhoven; R. A stepwise process for carbon dioxide sequestration using magnesium silicates. Front. Chem. Eng. China 4(2); 2010; pp. 133-141. doi: 10.1007/s11705-009-0259-5.

[10] Fagerlund; J.; Nduagu; E. Zevenhoven; R. Recent developments on the carbonation of serpentinite- derived Mg(OH)2 using a pressurised fluidised bed. Presented at GHGT-10; Amsterdam (the Netherlands) September 19-23; 2010. (Energia Procedia 2011)

[11] Fagerlund; J.; Nduagu; E.; Romão; I. & Zevenhoven; R. CO2 fixation using magnesium silicate minerals. Part 1: Process description and performance. Energy – the Int. J. (special edition ECOS2010); submitted (October 2010)

[12] Gerdemann; S.J.; O’Connor; W.K.; Dahlin; D.C.; Penner; L.R.; Rush; H. Ex Situ Aqueous Mineral Carbonation Environ. Sci. Technol. 41; 2007; pp. 2587-2593. doi: 10.1021/es0619253.

[13] Zevenhoven; R.; Fagerlund; J.; Nduagu; E.; Romão. I. Mineralisation of CO2 and recovery of iron using serpentinite rock. Proceedings of R´09; Davos (Switzerland); Sept. 14-16; 2009 (paper 149)

[14] Romão; I.; Gando Ferreira; L. M.; Fagerlund; J.; Zevenhoven; R. CO2 sequestration with Portuguese serpentinite. in: Proceedings of ACEME10; Turku (Finland) Nov. 29 - Dec.1; 2010; p. 77-87

[15] Stasiulaitiene I.; Fagerlund J.; Nduagu E.; Denafas G.; Zevenhoven R. Carbonation of serpentinite rock from Lithuania and Finland. Presented at GHGT-10; Amsterdam (the Netherlands) September 19-23; 2010. (Energia Procedia 2011)

[16] Romão; I.; Nduagu; E.; Fagerlund; J.; Gando-Ferreira; L. M. & Zevenhoven; R. CO2 Fixation Using Magnesium Silicate Minerals. Part 2: Energy Efficiency and Integration with iron-and steelmaking. Energy – the Int. J. (special edition ECOS2010); submitted (October 2010)

[17] O’Meadhra; R.; and van Rosmalen; G.M. Scale-up of ammonium sulphate crystallization in a DTB Crystallizer. Chem. Eng. Sci. 51(16); 1996; pp. 3943-3950. doi: 10.1016/0009-2509(96)00235-7.

[18] Björklöf; T. An energy efficiency study of carbon dioxide mineralization. M.Sc. Thesis; Åbo Akademi University; Finland; 2010

[19] Teir; S. Fixation of carbon dioxide by producing carbonations from minerals and steelmaking slags. PhD (Eng) thesis; Helsinki Univ; of Technol.; Espoo Finland; 2008

[20] IEA; Carbon capture and storage: a key carbon abatement option. IEA; Paris; France; 2008. pp. 189-190

[21] Eloneva; S. Reduction of CO2 emissions by mineral carbonation: steelmaking slags as raw material with a pure calcium carbonate end product. PhD (Eng) thesis; Aalto Univ. School of Sci and Technol.; Espoo Finland; 2010

[22] Khoo; H.H.; Sharatt; P.N.; Bu; J.; Borgna; A.; Yeo; T.Y.; Khor; T.Y.; Björklöf; T.G.; Zevenhoven; R. Carbon capture and mineralization in Singapore: preliminary environmental impacts and costs via LCA. Sci. Total Environ.; submitted (July 2010)

[23] Pundsack; F.L.; Recovery of silica; iron oxide and magnesium carbonate from the treatment of serpentine with ammonium bisulphate. U.S. Patent 3;338;667; 1967

[24] Hunwick; R.J.; System; apparatus and method for carbon dioxide. World patent WO2008101293(A1); Australian patent AU2008000232; 2008

Citeringar i Crossref