Konferensartikel

Coupling Mass Transfer with Mineral Reactions to Investigate CO<sub>2</sub> Sequestration in Saline Aquifers With Non-Equilibrium thermodynamics

Yuanhui Ji
Division of Energy Engineering, Luleå University of Technology, Sweden

Xiaoyan Ji
Division of Energy Engineering, Luleå University of Technology, Sweden

Xiaohua Lu
State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing University of Technology, China

Yongmin Tu
Key Laboratory of Concrete and Prestressed Concrete Structures of Ministry of Education, Southeast University, China \ Division of Structural Design and Bridges, Royal Institute of Technology (KTH), Sweden

Ladda ner artikelhttp://dx.doi.org/10.3384/ecp11057689

Ingår i: World Renewable Energy Congress - Sweden; 8-13 May; 2011; Linköping; Sweden

Linköping Electronic Conference Proceedings 57:16, s. 689-696

Visa mer +

Publicerad: 2011-11-03

ISBN: 978-91-7393-070-3

ISSN: 1650-3686 (tryckt), 1650-3740 (online)

Abstract

The coupling behaviors of mass transfer of aqueous CO2 with mineral reactions of aqueous CO2 with rock anorthite are investigated by chemical potential gradient and concentration gradient models; respectively. SAFT1-RPM is used to calculate the fugacity of CO2 in brine. The effective diffusion coefficients of CO2 are obtained based on the experimental kinetic data reported in literature. The calculation results by the two models and for two cases (mass transfer only and coupling mass transfer with mineral reaction) are compared. The results show that there are considerable discrepancies for the concentration distribution with distance by the concentration gradient and chemical potential gradient models; which implies the importance of consideration of the non-ideality. And the concentrations of aqueous CO2 at different distances by the concentration gradient model are higher and further than that by the chemical potential gradient model. The mineral reaction plays a considerable role for the CO2 geological sequestration when the time scale reaches 10 years for the anorthite case.

Nyckelord

CO<sub>2</sub> geological sequestration; Non-equilibrium thermodynamics; Chemical potential gradient; Mass transfer; Geochemical reaction

Referenser

[1] D. P. Schrag; Preparing to capture carbon; Science 315; 2007; pp. 812-813. doi: 10.1126/science.1137632.

[2] A. Firoozabadi; P. Cheng; Prospects for subsurface CO2 sequestration; AIChE J. 56; 2010; pp. 1398-1405. doi: 10.1002/aic.12287.

[3] R. G. Jr. Bruant; A. J. Guswa; et al. Safe storage of CO2 in deep saline aquifers; Environ. Sci. Technol. 36(11); 2002; pp. 240A-245A. doi: 10.1021/es0223325.

[4] S. Bachu; J. J. Adams; Sequestration of CO2 in geological media in response to climate change: capacity of deep saline aquifers to sequester CO2 in solution; Energy Convers. Manage. 44; 2003; pp. 3151-3175. doi: 10.1016/S0196-8904(03)00101-8.

[5] C. Yang; Y. Gu; Accelerated mass transfer of CO2 in reservoir brine due to density-driven natural convection at high pressures and elevated temperatures; Ind. Eng. Chem. Res. 45; 2006; pp. 2430-2436. doi: 10.1021/ie050497r.

[6] S. M. V. Gilfillan; B. S. Lollar; et al. Solubility trapping in formation water as dominant CO2 sink in natural gas fields; Nature 458; 2009; pp. 614 -618. doi: 10.1038/nature07852.

[7] D. W. Keith; J. A. Giardina; et al. Regulating the underground injection of CO2; Environ. Sci. Technol. 39; 2005; pp. 499A-505A. doi: 10.1021/es0534203.

[8] C. M. Oldenburg; Transport in geologic CO2 storage systems; Transp. Porous Med. 82; 2010; pp. 1-2. doi: 10.1007/s11242-009-9526-7.

[9] B. Zerai; CO2 sequestration in saline aquifer: geochemical modeling; reactive transport simulation and single-phase flow experiment. Doctoral Dissertation; January; 2006.

[10] Y. H. Ji; X. Y. Ji; et al. Progress in the study on the phase equilibria of the CO2-H2O and CO2-H2O-NaCl systems. Chin. J. Chem. Eng.; 15(3); 2007; pp. 439-448. doi: 10.1016/S1004-9541(07)60105-0.

[11] N. A. Darwish; N. Hilal; A simple model for the prediction of CO2 solubility in H2O-NaCl system at geological sequestration conditions; Desalination 260; 2010; pp. 114-118. doi: 10.1016/j.desal.2010.04.056.

[12] N. N. Akinfiev; L. W. Diamond; Thermodynamic model of aqueous CO2-H2O-NaCl solutions from 22 to 100 degrees C and from 0.1 to 100 MPa; Fluid Phase Equilibria 295; 2010; pp. 104-124. doi: 10.1016/j.fluid.2010.04.007.

[13] X. Y. Ji; S. P. Tan; et al. SAFT1-RPM approximation extended to phase equilibria and densities of CO2-H2O and CO2-H2O-NaCl systems. Ind. Eng. Chem. Res. 44; 2005; pp. 8419-8427. doi: 10.1021/ie050725h.

[14] B. Arendt; D. Dittmar; R. Eggers; Interaction of interfacial convection and mass transfer effects in the system CO2-water; Int. J. Heat Mass Transfer 47; 2004; pp. 3649-3657. doi: 10.1016/j.ijheatmasstransfer.2004.04.011.

[15] R. Farajzadeh; H. Salimi; et al. Numerical simulation of density-driven natural convection in porous media with application for CO2 injection projects; Int. J. Heat Mass Transfer 50; 2007; pp. 5054-5064. doi: 10.1016/j.ijheatmasstransfer.2007.08.019.

[16] R. Farajzadeh; P. L. J. Zitha; J. Bruining; Enhanced mass transfer of CO2 into water: experiment and modeling; Ind. Eng. Chem. Res. 48; 2009; pp. 6423-6431. doi: 10.1021/ie801521u.

[17] N. Kocherginsky; Y. K. Zhang; Role of standard chemical potential in transport through anisotropic media and asymmetrical membranes; J. Phys. Chem. B 107; 2003; pp. 7830-7837. doi: 10.1021/jp027572l.

[18] G. A. Truskey; F. Yuan; D. F. Katz.; Transport phenomena in biological systems. Prentice Hall; 2009.

[19] C. Liu; Y. Ji; et al. Thermodynamic analysis for synthesis of advanced materials. Molecular Thermodynamics of Complex Systems; Struct Bond 131; 2009; pp. 193-270. doi: 10.1007/978-3-540-69116-7_5.

[20] Y. H. Ji; X. Y. Ji; et al. Modelling of mass transfer coupling with crystallization kinetics in microscale; Chem. Eng. Sci. 65(9); 2010; pp. 2649-2655. doi: 10.1016/j.ces.2009.12.045.

[21] Y. H. Ji; X. Y. Ji; X. H. Lu; Modeling mass transfer of CO2 in brine at high pressures by chemical potential gradient; Fluid Phase Equilibria 2010 submitted.

[22] B. Zerai; B. Z. Saylor; G. Matisoff; Computer simulation of CO2 trapped through mineral precipitation in the Rose Run Sandstone; Ohio; Applied Geochemistry 21; 2006; pp. 223-240. doi: 10.1016/j.apgeochem.2005.11.002.

[23] F. Gherardi; T. Xu; K. Pruess; Numerical modeling of self-limiting and self-enhancing caprock alteration induced by CO2 storage in a depleted gas reservoir; Chemical Geology 244; 2007; pp. 103-129. doi: 10.1016/j.chemgeo.2007.06.009.

[24] R. T. Wilkin; D. C. Digiulio; Geochemical impacts to groundwater from geologic carbon sequestration: controls on pH and inorganic carbon concentrations from reaction path and kinetic modeling; Environ. Sci. Technol. 44; 2010; pp. 4821-4827. doi: 10.1021/es100559j.

[25] T. Xu; Y. K. Kharaka; et al. Reactive transport modeling to study changes in water chemistry induced by CO2 injection at the Frio-I Brine Pilot; Chemical Geology 271; 2010; pp. 153-164. doi: 10.1016/j.chemgeo.2010.01.006.

[26] T. Xu; K. Pruess; Modeling multiphase non-isothermal fluid flow and reactive geochemical transport in variably saturated fractured rocks: 1. Methodology. Am. J. Sci. 301; 2001; pp. 16-33. doi: 10.2475/ajs.301.1.16.

[27] T. Xu; E. L. Sonnenthal; et al. TOURGHREACT: a simulation program for non-isothermal multiphase reactive geochemical transport in variably saturated geologic media. Comp. Geosci. 32; 2006; pp. 145-165. doi: 10.1016/j.cageo.2005.06.014.

[28] T. Xu; J. A. Apps; K. Pruess; Numerical simulation to study mineral trapping for CO2 disposal in deep aquifers. Appl. Geochem. 19; 2004; pp. 917 – 936. doi: 10.1016/j.apgeochem.2003.11.003.

[29] R. B. Bird; W. E. Stewart; et al. Transport Phenomena; John Wiley & Sons; Inc.; 2006.

[30] J.M. Prausnitz; R.N. Lichtenthaler; E.G. de Azevedo; Molecular Thermodynamics of Fluid-phase Equilibria. Third edition; NJ; Prentice Hall PTR; 1999.

[31] J. M. Matter; P. B. Kelemen; Permanent storage of carbon dioxide in geological reservoirs by mineral carbonation; Nature Geoscience 2; 2009; pp. 837 – 841. doi: 10.1038/ngeo683.

[32] D. Kondepudi; I. Prigogine; Modern Thermodynamics: From Heat Engines to Dissipative Structures. John Wiley & Sons; Chichester; 1998.

Citeringar i Crossref