Review on Graphite Foam as Thermal Material for Heat Exchangers

Wamei Lin
Department of Energy Sciences, Lund University, Lund, Sweden

Jinliang Yuan
Department of Energy Sciences, Lund University, Lund, Sweden

Bengt Sundén
Department of Energy Sciences, Lund University, Lund, Sweden

Ladda ner artikelhttp://dx.doi.org/10.3384/ecp11057748

Ingår i: World Renewable Energy Congress - Sweden; 8-13 May; 2011; Linköping; Sweden

Linköping Electronic Conference Proceedings 57:1, s. 748-755

Visa mer +

Publicerad: 2011-11-03

ISBN: 978-91-7393-070-3

ISSN: 1650-3686 (tryckt), 1650-3740 (online)


Due to the increased power consumptions in equipment; the demand of effective cooling methods becomes crucial. Because of the small scale spherical pores; graphite foam has huge specific surface area. Furthermore; the thermal conductivity of graphite foam is four times that of copper. The density of graphite foam is only 20 % of that of aluminum. Thus; the graphite foam is considered as a novel highly - conductive porous material for high power equipment cooling applications. However; in the commercial market; aluminum and copper are still the preferred materials for thermal management nowadays. In order to promote the graphite foam as a thermal material for heat exchangers; an overall understanding of the graphite foam is needed. This paper describes the structure of the graphite foam. Based on the special structure; the thermal properties and the flowing characteristics of graphite foam are outlined and discussed. Furthermore; the application of graphite foam as a thermal material for heat exchangers is highlighted for electronic packages and vehicle cooling systems. The physical problems and other aspects; which might block the development of graphite foam heat exchangers; are pointed out. Finally; several useful conclusions and suggestions are given to promote the development of graphite foam heat exchangers.


Graphite foam; heat exchanger; thermal management


[1] J. Klett; R. Hardy; E. Romine; C. Walls; and T. Burchell; High-thermal-conductivity; mesophase-pitch-derived carbon foams: effect of precursor on structure and properties; Carbon 38; 2000; pp. 953-973. doi: 10.1016/S0008-6223(99)00190-6.

[2] W. Ford; Method of making cellular refractory thermal insulating material; 1964; US Patent 3121050.

[3] J. W. Klett; Process for making carbon foam; 2000; US Patent 6033506.

[4] J. W. Klett; A. D. Mcmillan; N. C. Gallego; and C. A. Walls; The role of structure on the thermal properties of graphite foams; Journal of Materials Science 39; 2004; pp. 3659-3676. doi: 10.1023/B:JMSC.0000030719.80262.f8.

[5] Q. Yu; B. E. Thompson; A. G. Straatman; A unit cube-based model for heat transfer and fluid flow in porous carbon foam; Journal of Heat Transfer 128; 2006; pp. 354-360. doi: 10.1115/1.2165203.

[6] C. C. Tee; N. Yu; and H. Li; Modeling the overall heat conductive and convective properties of open-cell graphite foam; Modelling Simulation Material Science Engineering 16; 2008; 075006. doi: 10.1088/0965-0393/16/7/075006.

[7] A. G. Straatman; N. C. Gallego; B. E. Thompson; H. Hangan; Thermal characterization of porous carbon foam - convection in parallel flow; International Journal of Heat and Mass Transfer 49; 2006; pp. 1991-1998. doi: 10.1016/j.ijheatmasstransfer.2005.11.028.

[8] A. G. Straatman; N. G. Gallego; Q. Yu; and B. E. Thompson; Characterization of porous carbon foam as a material for compact recuperators; Journal of Engineering for Gas Turbines and Power 129; 2007; pp. 326-330. doi: 10.1115/1.2436562.

[9] K. C. Leong; L. W. Jin; H. Y. Li; and J. C. Chai; Forced convection air cooling in porous graphite foam for thermal management application; 11th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems; 2008; pp. 57-64.

[10] Y. R. Lin; J. H. Du; W. Wu; L. C. Chow; W. Notardonato; Experimental study on heat transfer and pressure drop of recuperative heat exchangers using carbon foam; Journal of Heat Transfer 132; 2010; 091902-1. doi: 10.1115/1.4001625.

[11] N. C. Gallego; and J. W. Klett; Carbon foams for thermal management; Carbon 41; 2003; pp. 1461-1466. doi: 10.1016/S0008-6223(03)00091-5.

[12] Z. A. Williams; and J. A. Roux; Graphite foam thermal management of a high packing density array of power amplifiers; Journal of Electronic Packaging 128; 2006; pp. 456-465. doi: 10.1115/1.2353282.

[13] V. Gandikota; and A. S. Fleischer; Experimental investigation of the thermal performance of graphite foam for evaporator enhancement in both boiling and an FC-72 thermosyphon; Heat Transfer Engineering 30(8); 2009; pp. 643-648. doi: 10.1080/01457630802659862.

[14] M. H. Lu; L. Mok; and R. J. Bezama; A graphite foams based vapor chamber for chip heat spreading; Journal of Electronic Packaging 128; 2006; pp. 427-431. doi: 10.1115/1.2351908.

[15] J. S. Coursey; J. Kim; and P. J. Boudreaux; Performance of graphite foam evaporator for use in thermal management; Journal of Electronic Packaging 127; 2005; pp. 127-134. doi: 10.1115/1.1871193.

[16] J. Klett; R. Ott; and A. McMillan; Heat exchangers for heavy vehicles utilizing high thermal conductivity graphite foams; SAE Technical Paper 2000-01-2207; 2000.

[17] Q. Yu; A. G. Straatman; B. E. Thompson; Carbon - foam finned tubes in air - water heat exchangers; Applied Thermal Engineering 26; 2006; pp. 131-143. doi: 10.1016/j.applthermaleng.2005.06.004.

[18] K. Lafdi; O. Mesalhy; and A. Elgafy; Graphite foams infiltrated with phase change materials as alternative materials for space and terrestrial thermal energy storage applications; Carbon 46; 2008; pp. 15-168. doi: 10.1016/j.carbon.2007.11.003.

[19] P. T. Garrity; J. F. Klausner; R. Mei; Performance of aluminum and carbon foams for air side heat transfer augmentation; Journal of Heat Transfer 132; 2010; 121901-1. doi: 10.1115/1.4002172.

[20] M. D. Haskell; Thermal resistance comparison of graphite foam; aluminum; and copper heat sinks; http://www.electronics-cooling.com/2006/02/thermal-resistance-comparison-of-graphite-foam-aluminum-and-copper-heat-sinks/.

[21] S. B. Zhao; Thought about the exponential item in formulas calculating tensile strength for high - porosity materials; Materials and Design 23; 2002; pp. 497-499. doi: 10.1016/S0261-3069(02)00010-9.

[22] ORNL’s graphite foam may aid transportation; http://www.ornl.gov/info/ornlreview/v33_3_00/foam.htm.

Citeringar i Crossref