Konferensartikel

Modeling Phase Change Materials Behaviour in Building Applications: Selected Comments

Yvan Dutil
t3e Industrial research chair, École de technologie supårieure, Montråal, Canada

Daniel Rousse
t3e Industrial research chair, École de technologie supårieure, Montråal, Canada

Stéphane Lassue
Univ. Lille Nord de France; Univ. Artois, LGCgE, France

Laurent Zalewski
Univ. Lille Nord de France; Univ. Artois, LGCgE, France

Annabelle Joulin
Univ. Lille Nord de France; Univ. Artois, LGCgE, France

Joseph Virgone
Universitå de Lyon, CNRS, France \ Universitå Lyon 1, CETHIL, France

Frédéric Kuznik
INSA-Lyon, CETHIL, France \ Universitå Lyon 1, CETHIL, France

Kevyn Johannes
Universitå de Lyon, CNRS, France \ Universitå Lyon 1, CETHIL, France

Jean-Pierre Dumas
LATEP, Universitå de Pau et des Pays de l’Adour, Pau, France

Jean-Pierre Bédécarrats
LATEP, Universitå de Pau et des Pays de l’Adour, Pau, France

Albert Castell
GREA Innovació Concurrent,Universitat de Lleida, Lleida, Spain

Luisa F. Cabeza
GREA Innovació Concurrent,Universitat de Lleida, Lleida, Spain

Ladda ner artikelhttp://dx.doi.org/10.3384/ecp11057929

Ingår i: World Renewable Energy Congress - Sweden; 8-13 May; 2011; Linköping; Sweden

Linköping Electronic Conference Proceedings 57:24, s. 929-936

Visa mer +

Publicerad: 2011-11-03

ISBN: 978-91-7393-070-3

ISSN: 1650-3686 (tryckt), 1650-3740 (online)

Abstract

In a recent meeting of IEA’s Annex 23; several members presented their conclusions on the modeling of phase change materials behavior in the context of building applications. These conclusions were in agreement with those of a vast review; involving the survey of more than 250 journal papers; undertaken earlier by the group of École de technologie supérieure. In brief; it can be stated that; at this point; the confidence in reviewed models is too low to use them to predict the future behavior of a building with confidence. Moreover; it was found that overall thermal behaviors of PCM are poorly known; which by itself creates an intrinsic unknown in any model. Models themselves are most of time suspicious as they are often not tested in a very stringent or exhaustive way. In addition; it also appears that modeling parameters are somewhat too simplified to realistically describe the complete physics needed to predict the real life performance of PCMs added to a building. As a result; steps are now taken to create standard model benchmarks that will improve the confidence of the users. Hopefully; following these efforts; confidence will increase and usage of PCM in buildings should be eased.

Nyckelord

Phase change material; PCM characterization; Mathematical model; Model validation

Referenser

[1] B. Zalba; J.M. Marín; L.F. Cabeza; H. Mehling; Review on thermal energy storage with phase change: materials; heat transfer analysis and applications; Applied Thermal Engineering 23; 2003; pp. 251-283. doi: 10.1016/S1359-4311(02)00192-8.

[2] M. M. Farid; A. M. Khudhair; S. A. K. Razack; and S. Al-Hallaj; A review on phase change energy storage: materials and applications; Energy Conversion and Management; vol. 45 (9-10); 2004; pp.1597-1615. doi: 10.1016/j.enconman.2003.09.015.

[3] Y. Zhang; G. Zhou; K. Lin; Q. Zhang; and H. Di ; Application of latent heat thermal energy storage in buildings: State-of-the-art and outlook; Building and Environment; vol. 42(6); 2007; pp. 2197-2209. doi: 10.1016/j.buildenv.2006.07.023.

[4] V. V. Tyagi; and D. Buddhi; PCM thermal storage in buildings: A state of art; Renewable and Sustainable Energy Reviews; vol. 11(6); 2007; pp. 1146-1166. doi: 10.1016/j.rser.2005.10.002.

[5] A. F. Regin; S.C. Solanki; and J.S. Saini; Heat transfer characteristics of thermal energy storage system using PCM capsules: A review; Renewable and Sustainable Energy Reviews; vol. 12(9); 2008; pp. 2438-2458. doi: 10.1016/j.rser.2007.06.009.

[6] S. Mondal; Phase change materials for smart textiles – An overview; Applied Thermal Engineering; vol. 28(11-12); 2008; pp. 1536-1550. doi: 10.1016/j.applthermaleng.2007.08.009.

[7] H. Mehling; L.F. Cabeza. Heat and cold storage with PCM. An up to date introduction into basics and applications. Berlin; Springer; 2008. ISBN: 978-3-540-68557-9.

[8] V.P. Sethi; and S.K. Sharma; Survey and evaluation of heating technologies for worldwide agricultural greenhouse applications; Solar Energy; vol. 82(9); 2008; pp. 832-8598. doi: 10.1016/j.solener.2008.02.010.

[9] P. Verma; Varun; and S.K. Singal; Review of mathematical modeling on latent heat thermal energy storage systems using phase-change material; Renewable and Sustainable Energy Reviews; vol. 12(4); 2008; pp.999-1031. doi: 10.1016/j.rser.2006.11.002.

[10] A. Sharma et al.; Review on thermal energy storage with phase change materials and applications; Renewable and Sustainable Energy Review; Volume 13 (2) ; Issue 2; 2009; pp. 318-345.

[11] Y. Dutil; D. R. Rousse; N. Ben Salah; S. Lassue; L. Zalewski A review on phase-change materials: Mathematical modeling and simulations; Renewable and Sustainable Energy Reviews 15; Issue 1; 2011; pp. 112-130. doi: 10.1016/j.rser.2010.06.011.

[12] L.F. Cabeza; A. Castell; C. Barreneche; A. de Gracia; A. I. Fernández; Materials used as PCM in thermal energy storage in buildings: A review; Renewable and Sustainable Energy Reviews; 2011. doi: 10.1016/j.rser.2010.11.018.

[13] D.W. Hawes; D. Banu; D. Feldman; The stability of phase change materials in concrete; Solar Energy Materials and Solar Cells 27; 1992; pp. 103-118. doi: 10.1016/0927-0248(92)90113-4.

[14] A.B. Harnik; V. Meier and A. Rosli; in: Combined Influence of Freezing and Deicing Salt on Concrete - Physical Aspects; Durability of Building Materials and Components; ASTM STP 691; Eds. P.J. Sereda and G.G. Litvan; ASTM; 1980; pp. 476-483.

[15] J. P. Bédécarrats; F. Strub; B. Falcon and J. P. Dumas; Phase-change thermal energy storage using spherical capsules: performance of a test plant; Int J. Refrig. Vol. 19; No. 3; 1996; pp. 187-196. doi: 10.1016/0140-7007(95)00080-1.

[16] R. Radhakrishnan; K.E. Gubbins; Free energy studies of freezing in slit pores: an order-parameter approach using Monte Carlo simulation; Mol. Phys. 96; 1999; pp. 1249–1267. doi: 10.1080/00268979909483070.

[17] R. Radhakrishnan; K.E Gubbins; K.;Watanabe; K.; Kaneko; Freezing of simple fluids in microporous activated carbon fibers: comparison of simulation and experiment. Journal of Chemical Physics 111; 1999; pp. 9058–9067. doi: 10.1063/1.480261.

[18] G. H. Findenegg; A. Schreiber; Freezing and melting of water in ordered nanoporous silica materials. In: Setzer; M.J.; Auberg; R.; Keck; H.J. (Eds.); Proceedings of the International RILEM Workshop on Frost Resistance of Concrete; Cachan Cedex; France; 2002; pp. 105–116.

[19] Y. Cai et al; Preparation and characterizations of HDPE–EVA alloy/OMT nanocomposites/paraffin compounds as a shape stabilized phase change thermal energy storage material; Thermochimica Acta 451; 2006; pp. 44–51. doi: 10.1016/j.tca.2006.08.015.

[20] Q. Cao; P. Liu; Hyperbranched polyurethane as novel solid–solid phase change material for thermal energy storage; European Polymer Journal 42; 2006; pp. 2931–2939. doi: 10.1016/j.eurpolymj.2006.07.020.

[21] Q. Cao; P. Liu; Crystalline-amorphous phase transition of hyperbranched polyurethane phase change materials for energy storage; J Mater Sci 42; 2007; pp. 5661–5665. doi: 10.1007/s10853-006-0884-z.

[22] D. Zhang; K. Wu; Z.; Li; Tuning effect of porous media’s structure on the phase change behaviour of organic phase change matters. Journal of Tongji University 32; 2004; pp. 1163–1167.

[23] D. Zhang; J. Zhou; K. Wu; Z. Li; Granular phase changing composites for thermal energy storage; Solar Energy 78; 2005; pp. 471–480. doi: 10.1016/j.solener.2004.04.022.

[24] D. Zhang; S. Tian; D. Xiao; Experimental study on the phase change behavior of phase change material confined in pores; Sol. Energy 81; 2007; pp. 653–660. doi: 10.1016/j.solener.2006.08.010.

[25] Y. Yamagishi; T. Sugeno; T. H. Takeuci-II; A. T. Pyatenko; An evaluation of microencapsulated PCM for use in cold energy transportation medium; Energy Conversion Engineering Conference; 1996; pp. 2077 - 2083.

[26] A. Karaipekli; A. Sari; Capric–myristic acid/vermiculite composite as form-stable phase change material for thermal energy storage; Solar Energy 83; 2009; pp. 323–332. doi: 10.1016/j.solener.2008.08.012.

[27] W. Wang; X.Yang; Y. Fang; J. Ding; J. Yan; Enhanced thermal conductivity and thermal performance of form-stable composite phase change materials by using b-Aluminum nitride; Applied Energy 86; 2009; pp. 1196–1200. doi: 10.1016/j.apenergy.2008.10.020.

[28] G. Fang;H. Li; X. Liu; Preparation and properties of lauric acid/silicon dioxide composites as form-stable phase change materials for thermal energy storage; Materials Chemistry and Physics 122 ; 2010; pp. 533–536. doi: 10.1016/j.matchemphys.2010.03.042.

[29] I. Krupa; A.S. Luyt; Thermal properties of uncross-linked and cross-linked LLDPE/wax blends; Polymer Degradation and Stability 70; 2000; pp. 111-117. doi: 10.1016/S0141-3910(00)00097-5.

[30] H.S. Mpanza; A.S. Luyt; Comparison of different waxes as processing agents for low-density polyethylene; Polymer Testing 25; 2006; pp. 436–442. doi: 10.1016/j.polymertesting.2006.01.008.

[31] M. You; X. Wang; X. Zhang & W. Li; Effects of Microencapsulated Phase Change Materials Granularity and Heat Treat Treatment Condition on the Structure and Performance of Polyurethane Foams; Modern Applied Science; vol2; number 4; 2008.

[32] Kuznik; F.; Virgone; J. Experimental investigation of wallboard containing phase change material: Data for validation of numerical modeling; Energy and Buildings 41; 2009; pp. 561–570. doi: .

[33] Kuznik; F.; Virgone; J.; Experimental assessment of a phase change material for wall building use; Applied Energy 86; 2009; pp. 2038–2046. doi: 10.1016/j.apenergy.2009.01.004.

[34] Diaconu; B. M.; Cruceru; M.; Novel concept of composite phase change material wall system for year-round thermal energy savings; Energy and Buildings 42; 2010; pp. 1759–1772. doi: 10.1016/j.enbuild.2010.05.012.

[35] B. M. Diaconu; S. Varga; A. C. Oliveira; Experimental assessment of heat storage properties and heat transfer characteristics of a phase change material slurry for air conditioning applications; Applied Energy 87; Issue 2; 2010; pp. 620-628. doi: 10.1016/j.apenergy.2009.05.002.

[36] Z. Younsi; L. Zalewski; S. Lassue; D. R. Rousse; A. Joulin; A Novel Technique for Experimental Thermophysical Characterization of Phase-Change Materials; International Journal of Thermophysics; Online First™; 28 December 2010.

[37] A. Joulin; Z. Younsi; L. Zalewski; D. Rousse; S. Lassue; A numerical study of the melting of phase change material heated from a vertical wall of a rectangular enclosure; Int. Journal of Computational Fluid Dynamics; Vol. 23; No. 7; 2009; pp. 553–566. doi: 10.1080/10618560903203723.

[38] T. Kousksou; A. Jamil; Y. Zeraouli; J.P. Dumas; Experimental and Modeling Study of Ice Melting; Journal of Thermal Analysis and Calorimetry 89; 1; 2007; pp. 31-36.

[39] Program MICMCP of the French National Research Agency (Stock-E) [laboratories: LaTEP; LGCgE; CETHIL].

[40] D. Heim; J.A. Clarke; Numerical modelling and thermal simulation of PCM– gypsum composites with ESP-r. Energy and Buildings; 36; 8; 2004; pp. 795–805.

[41] D. Heim; Isothermal storage of solar energy in building construction; Renewable Energy 35; 2010; pp. 788–796. doi: 10.1016/j.renene.2009.09.005.

[42] K. Johannes; J. Virgone; F. Kuznik; X. Wang; T. Haavi; One dimensional Benchmark based on PCM; IEA; Annex 23; Applying Energy Storage in Buildings of the Future; 2010.

Citeringar i Crossref