The Effect of A Boron Oxide Layer on Hydrogen Production by Boron Hydrolysis

Tareq Abu Hamed
The Dead Sea and Arava Science Center, Tamar Regional Council, Israel \ Arava Institute for Environmental Studies, Hevel Eilot, Israel

Bara Wahbeh
Ben-Gurion University of the Negev, Sde-Boqer, Israel

Roni Kasher
Ben-Gurion University of the Negev, Sde-Boqer, Israel

Ladda ner artikelhttp://dx.doi.org/10.3384/ecp110571143

Ingår i: World Renewable Energy Congress - Sweden; 8-13 May; 2011; Linköping; Sweden

Linköping Electronic Conference Proceedings 57:2, s. 1143-1149

Visa mer +

Publicerad: 2011-11-03

ISBN: 978-91-7393-070-3

ISSN: 1650-3686 (tryckt), 1650-3740 (online)


Hydrolysis of boron is investigated as a part of a boron/boron oxide solar; water-splitting; thermochemical cycle. Boron was hydrolysed and boron oxide was gasified with steam in a tubular reactor. The influence of the reactor temperature and time on hydrogen conversion was measured at furnace set point temperatures of 873; 973 and 1073 K. The hydrogen production rate was measured by inline gas chromatography. The products were analyzed by X-ray diffraction. The average hydrogen production efficiency of 92% was obtained for both 973 and 1073 K. The formation of a boric acid layer on the reactor walls was attributed to the gasification of the boron oxide. The X-ray analysis shows 100% conversion of the boron to boron oxide and boric acid.


Hydrogen; thermochemical cycle; boron; oxide layer removal


[1] G. Karim; Hydrogen as a spark ignition engine fuel; International Journal of Hydrogen Energy 28; 2003; pp. 569-577. doi: 10.1016/S0360-3199(02)00150-7.

[2] M. Epstein; Solar induced solid fuels for transportation; Proceedings of the 12th International Symposium on Solar Power and Chemical Energy System; 2004; Oaxaca; Mexico; paper No. 302.

[3] T. Abu Hamed; J. Karni; M. Epstein; The use of boron for thermochemical storage and distribution of solar energy; Solar Energy 81; 2007; pp. 93-101. doi: 10.1016/j.solener.2006.06.012.

[4] C. L. Yeh; K. K. Kio; Ignition and combustion of boron particles; Progress in Energy and Combustion Science 22; 1996; pp. 511-541. doi: 10.1016/S0360-1285(96)00012-3.

[5] C. C. Li; F. A. Williams; Ignition and combustion of boron particles in Combustion of boron-based solid propellants and solid fuels; Kuo; K. K.; and Pein; R.; Eds.; Begell House Publishing Co. and CRC Press; Inc.; 1993; pp. 248–271.

[6] S. C. Li; F. A. Williams; Ignition and combustion of boron in wet and dry atmospheres; Proceeding of the 23rd Symposium on Combustion; 1990; pp. 1147–1154.

[7] M. K. King; Boron ignition and combustion in air-augmented rocket afterburners; Combustion Science and Technology; 1972; pp. 155–164. doi: 10.1080/00102207208952516.

[8] W. Zhou; R. A. Yetter; F. L. Dryer;H. Rabitz; R. C. Brown; C. E. Kolb. Comprehensive physical and numerical model of boron particle ignition. Proceeding of the 26th International Symposium on Combustion; 1996 pp. 1909–1917.

[9] R. C. Brown; C. E. Kolb; S. Y. Cho; R. A. Yetter; H. Rabitz; F. L. Dryer; Kinetic model for hydrocarbon-assisted particulate boron combustion; International Journal of Chemical Kinetics 26; 1994; pp. 319–332. doi: 10.1002/kin.550260302.

[10] J. Smolanoff; M. Sowa–Resat; A. Lapicki; L. Hanley; S. Ruatta; P. Hintz; S. L. Anderson; Kinetic parameters for heterogeneous boron combustion reactions via the cluster beam approach; Combustion and Flame 105; 1996; pp. 68–79. doi: 10.1016/0010-2180(95)00155-7.

[11] H. Krier; R. L. Burton; S. R. Pirman; M. J. Spalding; Shock initiation of crystalline boron in oxygen and fluorine compounds. Proceeding of the 30th American Institute of Aereonautics and Astronautics Thermophysics Conference; 1995; paper No. 2095-2120. doi: 10.2514/6.1995-2120.

[12] Y. A. Vovchuk; A. N. Zolotko; L. A. Klyachko; D. I. Polishchuk; V. G. Shevchuk; Gasification of boron oxide; Fizika Goreniya i Vzryva 10; 1972; pp. 615-618.

[13] R. Sontgen; A. Freidrich; A simple model of the oxidation kinetics of boron in a medium containing water vapor; in Combustion of Boron Based Propellant and Solid Fuels; K. K. Kuo and R. Pein; Eds.; Begell House Publishing Co. and CRC Press; Inc.; 1993; pp. 211-217.

[14] V. Rosenband; A. Gany; Y.M. Timnat; Magnesium and boron combustion in hot steam atmosphere; Defense Science Journal 48; 1998; pp. 309-315.

[15] I. Vishnevetsky; M. Epstein; T. Abu-Hamed; J. Karni; Boron hydrolysis at moderate temperatures – First step to solar fuel cycle for transportation; Journal of Solar Energy Engineering 130; 2008; pp. 14506-14511. doi: 10.1115/1.2807215.

[16] R. J. Weiss; H. C. Ly; K. Wegner; S. E. Pratsinis; A. Steinfeld; H2 production by Zn hydrolysis in a hot-wall aerosol reactor; AIChE Journal 51; 2005; pp. 1966–1970. doi: 10.1002/aic.10437.

Citeringar i Crossref