Konferensartikel

Demonstration Project of the Solar Hydrogen Energy System Located on Taleghan-Iran: Technical-Economic Assessments

Abolfazl Shiroudi
Ministry of Energy-Renewable Energy organization of Iran (SUNA), Tehran, Iran

Seyed Reza Hosseini Taklimi
Linkoping University of Technology, Linkoping, Sweden

Ladda ner artikelhttp://dx.doi.org/10.3384/ecp110571158

Ingår i: World Renewable Energy Congress - Sweden; 8-13 May; 2011; Linköping; Sweden

Linköping Electronic Conference Proceedings 57:4, s. 1158-1165

Visa mer +

Publicerad: 2011-11-03

ISBN: 978-91-7393-070-3

ISSN: 1650-3686 (tryckt), 1650-3740 (online)

Abstract

One of the most attractive features of hydrogen as an energy carrier is that it can be produced from abundant material like water. The use of electrolysis to produce hydrogen from water is an efficient method from small to large scales. Energy for supplying water electrolysis systems can be provided by photovoltaic arrays. During the daylight hours; the sunlight on the photovoltaic arrays converts into electrical energy which can be used for electrolyzer. The hydrogen produced by the electrolyzer is compressed and stored in hydrogen vessel and provides energy for the fuel cell to meet the load when the solar energy is insufficient. This study investigates a stand-alone power system that consists of 10 kW PV arrays as power supply and 5 kW electrolyzer. They have been integrated and worked at Taleghan site in Iran. Result was simulated and optimized by using HOMER simulation tools and techno-economic analysis of system presented in this paper.

Nyckelord

Hydrogen; PV array; Electrolyzer; Fuel cell; HOMER

Referenser

[1] K. Ro; S. Rahman; IEEE Transactions on Energy Conversion 13 (3); 1998; pp. 276-281. doi: 10.1109/60.707608.

[2] A.M. Ramirez; P.J. Sebastian; S.A. Gamboa; M.A. Rivera; O. Cuevas; J. Campos; Int J Hydrogen Energy 25; 2000; pp. 267-271. doi: 10.1016/S0360-3199(99)00038-5.

[3] W. Isherwood; J.R. Smith; S.M. Aceves; G. Berry; W. Clark; R. Johnson; D. das; D. Goering; R. Seifert; Solar Energy 25; 2000; pp. 1005-1020.

[4] Ø. Ulleberg; Solar Energy 76; 2004; pp. 323-329. doi: 10.1016/j.solener.2003.09.013.

[5] S.A. Sherif; F. Barbir; T.N. Vezirouglu; Solar Energy 78; 2005; pp. 647-660. doi: 10.1016/j.solener.2005.01.002.

[6] D.B. Nelson; M.H. Nehrir; C. Wang; Renewable Energy 31; 2006; pp. 1641-1656. doi: 10.1016/j.renene.2005.08.031.

[7] S. Busquet; F. Domain; R. Metkemeijer; D. Mayer; Ecole des Mines de Paris-Centre d’Energétique; Rue Claude Daunesse; Les Lucioles-BP 207; F-06904 Sophia Antipolis.

[8] Technical Catalogue of Solar Module MA36/45;Optical Fiber Fabrication Company; Iran

[9] H. Moghbelli; R. Vartanian; International Conference on Renewable Energy for Developing Countries; 2006.

[10] www.SMA.de

[11] K.E. Cox; K.D. Williamson; Hydrogen: its technology and implications; Ohio: CRC Press Inc.; 1977.

[12] P. Hollmuller; J. Joubert; B. Lachal; K. Yvon; Int. J. Hydrogen Energy 25; 2000.

[13] R. Perez; Home Power 22; 1991; pp. 26-30.

[14] Fuel Cell Handbook; 6th ed.; National Energy Technology Lab; U.S. DOE; Pittsburgh; PA; 2002.

[15] S. Rahman and K. Tam; IEEE Transactions on Energy Conversion 3 (1); 1988; pp. 50-55.

[16] Nexa™ (310-0027) Power Module User’s Manual; MAN5100078; 2003.

[17] J. Cotrell; W. Pratt; NREL/TP-500-34648; 2003.

[18] E. Koutroulis; K. Kalaitzakis; Renewable Energy 28 (1); 2003; pp. 139-152.

[19] P. Lehman; C. Parra; Solar Today; the American solar energy society; 1994; pp: 20-22

[20] N. Nagai; M. Takeuchi; T. Kimura; T. Oka; Int. J Hydrogen Energy 28; 2003; pp. 35-41.

[21] Solar Electric Products Catalog; August 2005.

[22] NERL. Hybrid Optimization Model for Electric Renewable (HOMER) Available freely at (http://www.nrel.gov/international/tools/HOMER/homer.html).

[23] E.I. Zoulias; N. Lymberopoulos; Renewable Energy 32; 2007; pp. 680-696.

[24] RETScreenTM database; URL: www.retscreen.net.

Citeringar i Crossref