Two Dimensional PEM Fuel Cell Modeling at Different Operation Voltages

Mohammad Ameri
Energy Eng. Department, Power & Water University of Technology, Tehran

Pooria Orrojie
Energy Eng. Department, Power & Water University of Technology, Tehran

Ladda ner artikelhttp://dx.doi.org/10.3384/ecp110571166

Ingår i: World Renewable Energy Congress - Sweden; 8-13 May; 2011; Linköping; Sweden

Linköping Electronic Conference Proceedings 57:5, s. 1166-1173

Visa mer +

Publicerad: 2011-11-03

ISBN: 978-91-7393-070-3

ISSN: 1650-3686 (tryckt), 1650-3740 (online)


This paper presents a comprehensive; consistent and systematic mathematical modeling for PEM fuel cells that can be used as the general formulation for the simulation and analysis of PEM fuel cells. As an illustration; the model is applied to an isothermal; steady state; two-dimensional PEM fuel cell at different operation voltages to investigate the fuel cells performance parameters such as the mass concentration; the velocity distribution of reactant; current density distribution; and polarization curve. The model includes the transport of gas in the gas flow channels; electrode backing and catalyst layers; the transport of water and hydronium in the polymer electrolyte of the catalyst and polymer electrolyte layers; and the transport of electrical current in the solid phase. Water and ion transport in the polymer electrolyte has been modeled using the generalized Stefan–Maxwell equations. Moreover; the reactant gas flow in the gas channel has been modeled by continuity and the steady state incompressible Navier-Stokes equations. All of the model equations are solved with finite element method using commercial software package COMSOL Multi physics. The results from PEM fuel cell modeling at different operation voltages are then compared with each other and finally according to the results; the strategy to improve fuel cell performance with the target of reducing cost is introduced.


PEM fuel cell; Mathematical modeling; Finite element; COMSOL multi physic


[1] N. Djilali; Computational modeling of polymer electrolyte membrane (PEM) fuel cells; Challenges and Opportunities Energy; 2006; pp.1006-1016.

[2] E.F. Cunha; A.B. Andrade; E. Robalinho; M.L.M. Bejarano; E. Cekinski; M. Linardi; Modeling and simulation of PEM fuel cell’s flow channels using CFD techniques; Proceeding of International Nuclear Atlantic Conference; 2007; pp.107-123.

[3] P.T. Nguyen; T. Berning; N. Djilali; Computational model of PEM fuel cell with serpentine gas flow channels; Journal of Power Sources; 130; 2004; pp.149-157. doi: 10.1016/j.jpowsour.2003.12.027.

[4] S. Karvonen; T. Rottinen; J. Saarinen; O. Himanen; Modeling of flow field in polymer Electrolyte membrane fuel cell; Journal of Power Sources; 161; 2006; pp. 876-884. doi: 10.1016/j.jpowsour.2006.04.145.

[5] G. Squadrito; O. Barbera; I. Gatto; G. Giacoppo; F. Urbani; E. Passalacqua; CFD analysis of the flow field scale-up influence on the electrodes performance in a PEFC; Journal of Power Sources; 152; 2005; pp. 67-74. doi: 10.1016/j.jpowsour.2004.12.054.

[6] T.E. Springer; T.A. Zawodzinske; S. Gatteadold; Polymer Electrolyte Fuel Cell Model; Journal of Electrochem Soc.; 138; 2000; pp. 2334-2342. doi: 10.1149/1.2085971.

[7] V. Gurau; F. Barbir; H. Liu; An Analytical Solution of a Half-Cell Model for PEM Fuel Cell; Journal of the Electrochemical Society; 147; 2000; pp. 2468-2477. doi: 10.1149/1.1393555.

[8] T. Berning; D.M. Lu ; N. Djilali; Three-dimensional computational analysis of transport phenomena in a PEM fuel cell; Journal of Power Sources; 106; 2004; pp. 284-294. doi: 10.1016/S0378-7753(01)01057-6.

[9] K. Haraldsson; K. Wipke; Evaluating PEM fuel cell system models; Journal of Power Sources; 126; 2004; pp. 88-97. doi: 10.1016/j.jpowsour.2003.08.044.

[10] D.J. Nelson; M.R. Spakovsky; Single domain PEMFC model based on Siegel Siegel agglomerate catalyst geometry; Journal of Power Sources; 115; 2003; pp. 81-89. doi: 10.1016/S0378-7753(02)00622-5.

[11] A. Biyikoglu; Review of proton exchange membrane fuel cell models; International Journal of Hydrogen Energy; 30; 2007; pp. 1181-1212. doi: 10.1016/j.ijhydene.2005.05.010.

[12] K. Broka; Characterization of the Components of the Proton Exchange Membrane Fuel Cell; Technical licentiate Thesis; Royal Institute of Technology; Stockholm; Sweden; 1995; pp. 93-107.

[13] H. Meng; C.Y. Wang; Model of Two Phase Flow and Flooding Dynamics in PEMFC; Journal of the Electrochemical Society; 152; 2005; pp.1733-1741. doi: 10.1149/1.1955007.

Citeringar i Crossref