Effect of Type and Concentration of Substrate on Power Generation in a Dual Chambered Microbial Fuel Cell

A. A. Ghoreyshi
Chemical Engineering Department, Babol University of Technology, Babol, Iran

T. Jafary
Chemical Engineering Department, Babol University of Technology, Babol, Iran

G. D. Najafpour
Chemical Engineering Department, Babol University of Technology, Babol, Iran

F. Haghparast
Chemical Engineering Department, Babol University of Technology, Babol, Iran

Ladda ner artikelhttp://dx.doi.org/10.3384/ecp110571174

Ingår i: World Renewable Energy Congress - Sweden; 8-13 May; 2011; Linköping; Sweden

Linköping Electronic Conference Proceedings 57:6, s. 1174-1181

Visa mer +

Publicerad: 2011-11-03

ISBN: 978-91-7393-070-3

ISSN: 1650-3686 (tryckt), 1650-3740 (online)


Microbial fuel cell; as a new technology for energy generation; has gained a lot of attention in converting a wide range of organic and inorganic substrates to bioelectricity in recent years. Substrate as the fuel of MFCs has an effective role on the performance of MFCs. To investigate the effect of type and concentration of substrate on the MFC performance; glucose and date syrup were examined over a concentration range of 2-20 g.l-1. Date syrup or any waste of date could be used as a natural substrate while glucose is considered as a synthetic carbon source. In this research a two-rectangular chambered MFC separated by a Nafion 112 proton exchange membrane; was constructed. The anodic compartment was inoculated by saccharomyces cerevisiae as biocatalyst. 200 µmol.l-1 of neutral red as the anodic mediator and 300 µmol.l-1 of potassium ferricyanide as oxidizer were added to anode and cathode chambers; respectively. The results has shown that 3 g.l-1 date syrup-fed- MFC had the highest power density; 51.95 mW.m-2 (normalized to the geometric area of the anodic membrane; which was 9 cm2); corresponding to a current density of 109.0384 mA.m-2 and a MFC voltage of 967 mV.


Microbial fuel cell; Substrate; Glucose; Date syrup; Power density


[1] Z. D. Liu and H. R. Li; Effects of bio-and abio-factors on electricity production in a mediatorless microbial fuel cell; Biochemical Engineering Journal 36; 2007; pp. 209-214. doi: 10.1016/j.bej.2007.02.021.

[2] M. S. Kim and Y. Lee; Optimization of culture conditions and electricity generation using Geobacter sulfurreducens in a dual-chambered microbial fuel-cell; International Journal of Hydrogen Energy 35; 2010; pp. 13028-13034. doi: 10.1016/j.ijhydene.2010.04.061.

[3] A. Larrosa; L. J. Lozano; K. P. Katuri; I. Head; K. Scott; and C. Godinez; On the repeatability and reproducibility of experimental two-chambered microbial fuel cells; Fuel 88; 2009; pp. 1852-1857. doi: 10.1016/j.fuel.2009.04.026.

[4] X. Tang; Z. Du; and H. Li; Anodic Electron Shuttle Mechanism Based on 1-Hydroxy-4-Aminoanthraquinone in Microbial Fuel Cells; Electrochemistry Communications 12; 2010; pp. 1140-1143. doi: 10.1016/j.elecom.2010.06.005.

[5] K. Chae; M. Choi; F. Ajayi; W. Park; I. Chang; and I. Kim; Mass Transport through a Proton Exchange Membrane (Nafion) in Microbial Fuel Cells†; Energy & Fuels 22; 2007; pp. 169-176. doi: 10.1021/ef700308u.

[6] F. Li; Y. Sharma; Y. Lei; B. Li; and Q. Zhou; Microbial Fuel Cells: The Effects of Configurations; Electrolyte Solutions; and Electrode Materials on Power Generation; Applied biochemistry and biotechnology 160; 2010; pp. 168-181. doi: 10.1007/s12010-008-8516-5.

[7] A. Larrosa-Guerrero; K. Scott; I. M. Head; F. Mateo; A. Ginesta; and C. Godinez; Effect of temperature on the performance of microbial fuel cells; Fuel 2010; pp.

[8] Z. He; Y. Huang; A. K. Manohar; and F. Mansfeld; Effect of electrolyte pH on the rate of the anodic and cathodic reactions in an air-cathode microbial fuel cell; Bioelectrochemistry 74; 2008; pp. 78-82. doi: 10.1016/j.bioelechem.2008.07.007.

[9] I. Ieropoulos; J. Winfield; and J. Greenman; Effects of flow-rate; inoculum and time on the internal resistance of microbial fuel cells; Bioresource technology 101; 2010; pp. 3520-3525. doi: 10.1016/j.biortech.2009.12.108.

[10] K. Chae; M. Choi; J. Lee; K. Kim; and I. Kim; Effect of different substrates on the performance; bacterial diversity; and bacterial viability in microbial fuel cells; Bioresource technology 100; 2009; pp. 3518-3525. doi: 10.1016/j.biortech.2009.02.065.

[11] A. Thygesen; F. W. Poulsen; B. Min; I. Angelidaki; and A. B. Thomsen; The effect of different substrates and humic acid on power generation in microbial fuel cell operation; Bioresource technology 100; 2009; pp. 1186-1191. doi: 10.1016/j.biortech.2008.07.067.

[12] D. Pant; G. Van Bogaert; L. Diels; and K. Vanbroekhoven; A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production; Bioresource technology 101; 2010; pp. 1533-1543. doi: 10.1016/j.biortech.2009.10.017.

[13] W. Habermann and E. Pommer; Biological fuel cells with sulphide storage capacity; Applied microbiology and biotechnology 35; 1991; pp. 128-133. doi: 10.1007/BF00180650.

[14] H. Liu; S. Cheng; and B. E. Logan; Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell; Environ. Sci. Technol 39; 2005; pp. 658-662. doi: 10.1021/es048927c.

[15] S. Chaudhuri and D. Lovley; Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells; Nature Biotechnology 21; 2003; pp. 1229-1232. doi: 10.1038/nbt867.

[16] M. Behera and M. Ghangrekar; Performance of microbial fuel cell in response to change in sludge loading rate at different anodic feed pH; Bioresource technology 100; 2009; pp. 5114-5121. doi: 10.1016/j.biortech.2009.05.020.

[17] L. Huang; R. J. Zeng; and I. Angelidaki; Electricity production from xylose using a mediator-less microbial fuel cell; Bioresource technology 99; 2008; pp. 4178-4184. doi: 10.1016/j.biortech.2007.08.067.

[18] S. Venkata Mohan; G. Mohanakrishna; B. P. Reddy; R. Saravanan; and P. N. Sarma; Bioelectricity generation from chemical wastewater treatment in mediatorless (anode) microbial fuel cell (MFC) using selectively enriched hydrogen producing mixed culture under acidophilic microenvironment; Biochemical Engineering Journal 39; 2008; pp. 121-130. doi: 10.1016/j.bej.2007.08.023.

[19] X. Wang; Y. Feng; N. Ren; H. Wang; H. Lee; N. Li; and Q. Zhao; Accelerated start-up of two-chambered microbial fuel cells: Effect of anodic positive poised potential; Electrochimica Acta 54; 2009; pp. 1109-1114. doi: 10.1016/j.electacta.2008.07.085.

[20] Y. Feng; X. Wang; B. Logan; and H. Lee; Brewery wastewater treatment using air-cathode microbial fuel cells; Applied microbiology and biotechnology 78; 2008; pp. 873-880. doi: 10.1007/s00253-008-1360-2.

[21] B. Min; J. R. Kim; S. E. Oh; J. M. Regan; and B. E. Logan; Electricity generation from swine wastewater using microbial fuel cells; Water Research 39; 2005; pp. 4961-4968. doi: 10.1016/j.watres.2005.09.039.

[22] L. Huang and B. E. Logan; Electricity generation and treatment of paper recycling wastewater using a microbial fuel cell; Applied microbiology and biotechnology 80; 2008; pp. 349-355. doi: 10.1007/s00253-008-1546-7.

[23] G. Chamberlin and G. Shute; Colorimetric chemical analytical methods; 1974

Citeringar i Crossref