Performance Analysis of a Hybrid Solar-Geothermal Power Plant in Northern Chile

Ignacio Mir
Departamento de Ingeniería Mecánica y Metalúrgica, Pontificia Universidad Católica de Chile, Santiago, Chile

Rodrigo Escobar
Departamento de Ingeniería Mecánica y Metalúrgica, Pontificia Universidad Católica de Chile, Santiago, Chile

Julio Vergara
Departamento de Ingeniería Mecánica y Metalúrgica, Pontificia Universidad Católica de Chile, Santiago, Chile

Julio Bertrand
Empresa Nacional del Petróleo, ENA, Santiago, Chile

Ladda ner artikelhttp://dx.doi.org/10.3384/ecp110571281

Ingår i: World Renewable Energy Congress - Sweden; 8-13 May; 2011; Linköping; Sweden

Linköping Electronic Conference Proceedings 57:7, s. 1281-1288

Visa mer +

Publicerad: 2011-11-03

ISBN: 978-91-7393-070-3

ISSN: 1650-3686 (tryckt), 1650-3740 (online)


Chile has introduced sustainability goals in its electricity law in response to increased environmental awareness and the need to achieve higher levels of energy security. In northern Chile; the Atacama Desert has a large available surface with high radiation level; while the tectonic activity along the entire country testifies an ample yet unexploited geothermal resource. The novel concept of hybridizing a geothermal power plant with solar energy assistance is presented here for the particular conditions of Northern Chile. A thermodynamic model is developed to estimate the energy production in a hybrid power plant for two different configurations of solar resource use: adding peak power for a constant geothermal output; and saving geothermal resources for a constant power output. The thermodynamic model considers a single-flash geothermal plant with the addition of solar heat from a parabolic trough field. The solar heat is used to produce superheated steam and to produce additional saturated steam from the separator whenever possible. Results indicate that the energy produced by a geothermal well can be increased up to 11.6% and achieve savings of up to 10.3% in the use of geothermal resources by adding solar assistance when using the single flash geothermal technology. Moreover; the optimal mass flow rate of the geothermal plant is decreased when adding solar assistance. It is recommended to exploit solar energy together with geothermal energy wherever possible; to take advantage of each other’s strengths and mutually eliminate weaknesses.


Concentrated solar power; Geothermal Power Plant; Hybrid; Chile


[1] Comisión Nacional de Energía; CNE (2010). Balance Nacional Enegético 2008. Last accessed at http://www.cne.cl/cnewww/opencms/06_Estadisticas/Balances_Energ.html on August 13; 2010.

[2] Ministerio de Economía. Ley general de servicios eléctricos; Decreto con fuerza de ley n°4; Art. único Nº 2; D.O. 01.04.2008. Santiago; February 2007.

[3] Ortega; A.; Escobar; R.; Colle; S.; Abreu; S. (2010). The State of Solar Energy Resource Assessment in Chile. Renewable Energy; 35; 11; 2514-2524. doi: .

[4] Handal; S.; Alvarenga; Y.; & Recinos; M. (2008). Solar Steam Booster in the Ahuachapán Geothermal Field. El Salvador.

[5] Lentz; & Almaza. (2003). Parabolic troughs to increase the geothermal wells flow enthalpy. Mexico.

[6] DiPippo; R. (2008). Geothermal Power Plants; Principles; Applications; Case Studies and Enviromental Impact; Second Edition. London: Elsevier.

[7] Tester; J. et al; Massachusetts Institute of Technology (MIT) (2006). The future of geothermal Energy. Retrieved Jan; 2010. Last accessed on August 13; 2010 at: http://geothermal.inel.gov/publications/future_of_geothermal_energy.pdf.

[8] Leyzerovich; A. (2005). Wet-Steam Turbines for Nuclear Power Plants. New York: PennWell.

[9] Therminol. (2009). Therminol. Retrieved 2009; from www.therminol.com

[10] National Renewable Energy Laboratory NREL. (2009). TroughNet; Parabolic Trough Solar Field Technology Retrieved 2009; from: http://www.nrel.gov/csp/troughnet/solar_field.html.

Citeringar i Crossref