A Piezoelectric Energy Harvester Based on Pressure Fluctuations in Kármán Vortex Street

Dung-An Wang
Graduate Institute of Precision Engineering, National Chung Hsing University, Taiwan

Huy-Tuan Pham
Graduate Institute of Precision Engineering, National Chung Hsing University, Taiwan

Chia-Wei Chao
Graduate Institute of Precision Engineering, National Chung Hsing University, Taiwan

Jerry M. Chen
Department of Mechanical Engineering, National Chung Hsing University, Taiwan

Ladda ner artikelhttp://dx.doi.org/10.3384/ecp110571456

Ingår i: World Renewable Energy Congress - Sweden; 8-13 May; 2011; Linköping; Sweden

Linköping Electronic Conference Proceedings 57:11, s. 1456-1463

Visa mer +

Publicerad: 2011-11-03

ISBN: 978-91-7393-070-3

ISSN: 1650-3686 (tryckt), 1650-3740 (online)


We have developed a new energy harvester for harnessing energy from the Kármán vortex street behind a bluff body in a water flow. It converts flow energy into electrical energy through oscillation of a piezoelectric film. Oscillation of the piezoelectric film is induced by pressure fluctuation in the Kármán vortex street. Prototypes of the energy harvester are fabricated and tested. Experimental results show that an open circuit output voltage of 0.12 Vpp and an instantaneous output power of 0.7 nW are generated when the pressure oscillates with an amplitude of ~0.3 kPa and a frequency of ~52 Hz. This approach has the potential of converting hydraulic energy into electricity for powering wireless devices. The low output power of the device can be improved by an optimization design procedure or by adopting a piezoelectric material with higher piezoelectric constants. An array of these devices with multiple resonant frequencies may be considered for energy harvesting from ambient flow sources.


Energy Harvester; Piezoelectric; Kármán vortex street


[1] REN21; Renewables 2010 Global Status Report; 2010; pp. 15-16.

[2] D. Krähenbühl; C. Zwyssig; H. Weser; J.W. Kolar; Theoretical and experimental results of a mesoscale electric power generation system from pressurized gas flow; Journal of Micromechanics and Microengineering 19; 2009; 094009. doi: 10.1088/0960-1317/19/9/094009.

[3] A.S. Holmes; G. Hong; K.P. Pullen; Axial-flux permanent magnet machines for micropower generation; Journal of Microelectromechanical Systems 14; 2005; pp. 54-62. doi: 10.1109/JMEMS.2004.839016.

[4] F. Herrault; C.-H. Ji; M. G. Allen; Ultraminiaturized high-speed permanent-magnet generators for milliwatt-level power generation; Journal of Microelectromechanical Systems 17; 2008; pp. 1376-1387. doi: 10.1109/JMEMS.2008.2004854.

[5] M. Sanchez-Sanz; B. Fernandez; A. Velazquez; Energy-harvesting microresonator based on the forces generated by the Kammon street around a rectangular prism; Journal of Microelectromechanical Systems 18; 2009; pp. 449-457. doi: 10.1109/JMEMS.2009.2013395.

[6] J.J. Allen; A.J. Smits; Energy harvesting eel; Journal of Fluid and Structures 15; 2001; pp. 629-640. doi: 10.1006/jfls.2000.0355.

[7] G.W. Taylor; J.R. Burns; S.M. Kammann; W. B. Powers and T. R. Welsh; The energy harvesting eel: A small subsurface ocean/river power generator; IEEE Journal of Oceanic Engineering 26; 2001; pp. 539-547. doi: 10.1109/48.972090.

[8] L. Tang; M.P. Païdoussis; J. Jiang; Cantilevered flexible plates in axial flow: Energy transfer and the concept of flutter-mill; Journal of Sound and Vibration 326; 2009; pp. 263-276. doi: 10.1016/j.jsv.2009.04.041.

[9] R.D. Blevins; Flow-induced vibration; Van Nostrand Reinhold; ed. 2; 1990.

[10] R. Violette; E. de Langre; J. Szydlowski; Computation of vortex-induced vibrations of long structures using a wake oscillator model: Comparison with DNS and experiments; Computers and Structures 85; 2007; pp. 1134-1141. doi: 10.1016/j.compstruc.2006.08.005.

[11] D.F. Young; B.R. Munson; T.H. Okiishi; A brief introduction to fluid mechanics; John Wiley & Sons; 2001.

[12] F.M. White; Fluid Mechanics; McGraw-Hill; 1986.

[13] Y.J. Chung; S.-H. Kang; Laminar vortex shedding from a trapezoidal cylinder with different height ratios; Physics of Fluids 12; 2000; pp. 1251-1254. doi: 10.1063/1.870376.

[14] C. Norberg; An experimental investigation of the flow around a circular cylinder: influence of aspect ratio; Journal of Fluid Mechanics 258; 1994; pp. 287-316. doi: 10.1017/S0022112094003332.

[15] C.M. Ho; P. Huerre; Perturbed free shear layers; Annual Review of Fluid Mechanics 16; 1984; pp. 365-422. doi: .

[16] S. Adhikari; M.I. Friswell; D.J. Inman; Piezoelectric energy harvesting from broadband random vibrations; Smart Materials and Structures 18; 2009; 115005. doi: 10.1088/0964-1726/18/11/115005.

[17] S. Lee; B.D. Youn; B.C. Jung; Robust segment-type energy harvester and its application to a wireless sensor; Smart Materials and Structures 18; 2009; 095021. doi: 10.1088/0964-1726/18/9/095021.

[18] C. Mo; L.J. Radziemski; W.W. Clark; Experimental validation of energy harvesting performance for pressure-loaded piezoelectric circular diaphragms; Smart Materials and Structures 19; 2010; 075010. doi: 10.1088/0964-1726/19/7/075010.

[19] Z.L. Wang; J. Song; Piezoelectric nanogenerators based on zinc oxide nanowire arrays; Science 312; 2006; pp. 242-246. doi: 10.1126/science.1124005.

Citeringar i Crossref