An Advanced Environment for Hybrid Modeling and Parameter Identification of Biological Systems

Sabrina Proß
University of Applied Sciences Bielefeld, Germany

Bernhard Bachmann
University of Applied Sciences Bielefeld, Germany

Ladda ner artikelhttp://dx.doi.org/10.3384/ecp11063557

Ingår i: Proceedings of the 8th International Modelica Conference; March 20th-22nd; Technical Univeristy; Dresden; Germany

Linköping Electronic Conference Proceedings 63:63, s. 557-571

Visa mer +

Publicerad: 2011-06-30

ISBN: 978-91-7393-096-3

ISSN: 1650-3686 (tryckt), 1650-3740 (online)


Biological systems are often very complex so that an appropriate formalism is needed for modeling their behavior. Hybrid Petri nets; consisting of time-discrete as well as continuous Petri net elements; have proven to be ideal. This formalism was implemented based on the Modelica language. Several Petri net components are structured within an advanced Petri net library. A special sub library contains so-called wrappers for specific biological reac-tions to simplify the modeling procedure.

The Petri net models developed with the Dymola tool can be connected to Matlab Simulink to use all the Matlab power for parameter identification; sensitivity analysis and stochastic simulation.

This paper illustrates the usage of the Petri net library; the coupling to Matlab Simulink and further processing of the simulation results with algorithms in Matlab. In addition; the application is demonstrated by modeling the metabolism of Chinese Hamster Ovary Cells.


Biological Systems; Petri nets; Parame-ter Identification


[1] V.N. Reddy; M.L. Mavrovouniotis; M.N. Liebman (Eds.); Petri net representations in metabolic pathways: Proc Int Conf Intell Syst Mol Biol; 1993.

[2] C.A. Petri; Communication with automata; Rome Air Development Center; Research and Technology Division; 1966.

[3] R. Valk; Self-modifying nets; a natural extension of Petri nets; Automata; Languages and Programming (1978) 464–476.

[4] R. Hofestädt; S. Thelen; Quantitative modeling of biochemical networks; In Silico Biology 1 (1998) 39–53.

[5] F. Bause; P.S. Kritzinger; Stochastic Petri Nets; Vieweg; 2002. doi: 10.1007/978-3-322-86501-4.

[6] M. Heiner; D. Gilbert; R. Donaldson; Petri nets for systems and synthetic biology; Formal Methods for Computational Systems Biology (2008) 215–264.

[7] D. Gilbert; M. Heiner; From Petri nets to dif-ferential equations-an integrative approach for biochemical network analysis; Petri Nets and Other Models of Concurrency-ICATPN 2006 (2006) 181–200.

[8] A. Doi; S. Fujita; H. Matsuno; M. Nagasaki; S. Miyano; Constructing biological pathway mod-els with hybrid functional Petri nets; In Silico Biology 4 (2004) 271–291.

[9] P.J. Mosterman; M. Otter; H. Elmqvist; Modeling Petri nets as local constraint equations for hybrid systems using Modelica; Citeseer; Reno; Nevada; Proceedings of SCS Summer Simula-tion Conference; 1998; pp. 314–319.

[10] S.M. Fabricius; Extensions to the Petri Net Library in Modelica; ETH Zurich; Switzerland (2001).

[11] M. Otter; K.E. Årzén; I. Dressler (Eds.); State-Graph-a Modelica library for hierarchical state machines: 4th International Modelica Confer-ence; 2005.

[12] S. Proß; B. Bachmann; A Petri Net Library for Modeling Hybrid Systems in OpenModelica; Como; Italy; Modelica Conference proceed-ings; 2009.

[13] Modelica Association; Modelica - A Unified Object-Oriented Language for Physical Systems Modeling Language Specification Version 3.2 (2010).

[14] D. Gilbert; M. Heiner; S. Lehrack (Eds.); A unifying framework for modelling and analys-ing biochemical pathways using Petri nets: Proceedings of the 2007 international confer-ence on Computational methods in systems bi-ology; Springer-Verlag; 2007.

[15] S. Proß; B. Bachmann; R. Hofestädt; K. Niehaus; R. Ueckerdt; F.J. Vorhölter; P. Lutter; Modeling a Bacterium’s Life: A Petri-Net Library in Modelica; Como; Italy; Modelica Con-ference proceedings; 2009.

[16] Dynasim AB; Dymola-Dynamic Modeling Laboratory-User Manual Volume 2; Lund/Sweden; 2010.

[17] A. Saltelli; Sensitivity analysis in practice: a guide to assessing scientific models; John Wiley & Sons Inc; 2004.

[18] A. Saltelli; M. Ratto; T. Andres; Global sensitivity analysis: the primer; John Wiley & Sons Ltd; 2008.

[19] A. Saltelli; K. Chan; E.M. Scott; Sensitivity analysis; Wiley New York; 2000.

[20] R.I. Cukier; C.M. Fortuin; K.E. Shuler; A.G. Petschek; J.H. Schaibly; Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients. I Theory; The Journal of Chemical Physics 59 (1973) 3873–3876. doi: 10.1063/1.1680571.

[21] J.H. Schaibly; K.E. Shuler; Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients. II Applications; The Journal of Chemical Physics 59 (1973) 3879–3888. doi: 10.1063/1.1680572.

[22] R.I. Cukier; J.H. Schaibly; K.E. Shuler; Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients. III. Analysis of the approximations; The Journal of Chemical Physics 63 (1975) 1140–1149. doi: 10.1063/1.431440.

[23] A. Saltelli; S. Tarantola; K.P. Chan; A quantita-tive model-independent method for global sen-sitivity analysis of model output; Technomet-rics 41 (1999) 39–56. doi: 10.1080/00401706.1999.10485594.

[24] R.I. Cukier; H.B. Levine; K.E. Shuler; Nonlinear sensitivity analysis of multiparameter model systems; Journal of Computational Physics 26 (1978) 1–42. doi: 10.1016/0021-9991(78)90097-9.

[25] M. Koda; G.J. Mcrae; J.H. Seinfeld; Automatic sensitivity analysis of kinetic mechanisms; Int. J. Chem. Kinet. 11 (1979) 427–444. doi: 10.1002/kin.550110408.

[26] J. Nocedal; S.J. Wright; Numerical optimization; Springer-Verlag New York Inc; New York; Berlin; Heidelberg; 1999. doi: 10.1007/b98874.

[27] T. Weise; Global Optimization Algorithms – Theory and Application; 2009. http://www.it-weise.de/.

[28] T. Bäck; Evolutionary algorithms in theory and practice: evolution strategies; evolutionary pro-gramming; genetic algorithms; Oxford Univer-sity Press; USA; 1996.

[29] N. Hansen; The CMA evolution strategy: a comparing review; Towards a new evolutionary computation (2006) 75–102.

[30] D.T. Gillespie; Exact stochastic simulation of coupled chemical reactions; The journal of physical chemistry 81 (1977) 2340–2361. doi: 10.1021/j100540a008.

[31] Birch; JR; A.J. Racher; Antibody production; Advanced drug delivery reviews 58 (2006) 671–685. doi: 10.1016/j.addr.2005.12.006.

[32] N. Kurano; C. Leist; F. Messi; S. Kurano; A. Fiechter; Growth behavior of Chinese hamster ovary cells in a compact loop bioreactor. 2. Effects of medium components and waste prod-ucts; Journal of biotechnology 15 (1990) 113–128. doi: 10.1016/0168-1656(90)90055-G.

[33] M.S. Lao; D. Toth; Effects of ammonium and lactate on growth and metabolism of a recom-binant Chinese hamster ovary cell culture; Biotechnology progress 13 (1997) 688–691. doi: 10.1021/bp9602360.

[34] S.S. Ozturk; M.R. Riley; B.O. Palsson; Effects of ammonia and lactate on hybridoma growth; metabolism; and antibody production; Biotechnol. Bioeng. 39 (1992) 418–431. doi: 10.1002/bit.260390408

[35] Y.S. Tsao; A.G. Cardoso; R.G. Condon; M. Voloch; P. Lio; J.C. Lagos; B.G. Kearns; Z. Liu; Monitoring Chinese hamster ovary cell culture by the analysis of glucose and lactate metabolism; Journal of biotechnology 118 (2005) 316–327. doi: 10.1016/j.jbiotec.2005.05.016.

[36] A. Provost; G. Bastin; S.N. Agathos; Y.J. Schneider; Metabolic design of macroscopic bioreaction models: application to Chinese hamster ovary cells; Bioprocess and biosystems engineering 29 (2006) 349–366. doi: 10.1007/s00449-006-0083-y.

[37] J. Link; Charakterisierung der Prozessparameter tierischer Zellkulturen in Schüttelinkuba-toren. Bachelor thesis; Bielefeld; 2010.

[38] S.S. Ozturk; B.O. Palsson; Chemical decompo-sition of glutamine in cell culture media: effect of media type; pH; and serum concentration; Biotechnology progress 6 (1990) 121–128. doi: 10.1021/bp00002a005.

[39] D.J. Wilkinson; Stochastic modelling for systems biology; Chapman & Hall/CRC; 2006.

Citeringar i Crossref