Konferensartikel

The OnWind Modelica Library for OffshoreWind Turbines - Implementation and first results

M. Strobel
Fraunhofer Institute for Wind Energy and Energy System Technology (IWES), Germany

F. Vorpahl
Fraunhofer Institute for Wind Energy and Energy System Technology (IWES), Germany

C. Hillman
Fraunhofer Institute for Wind Energy and Energy System Technology (IWES), Germany

X. Gu
Fraunhofer Institute for Wind Energy and Energy System Technology (IWES), Germany

A. Zuga
Fraunhofer Institute for Wind Energy and Energy System Technology (IWES), Germany

U. Wihlfahrt
Fraunhofer Institute for Wind Energy and Energy System Technology (IWES), Germany

Ladda ner artikelhttp://dx.doi.org/10.3384/ecp11063603

Ingår i: Proceedings of the 8th International Modelica Conference; March 20th-22nd; Technical Univeristy; Dresden; Germany

Linköping Electronic Conference Proceedings 63:67, s. 603-609

Visa mer +

Publicerad: 2011-06-30

ISBN: 978-91-7393-096-3

ISSN: 1650-3686 (tryckt), 1650-3740 (online)

Abstract

At Fraunhofer IWES a Modelica Library including all major components needed for load calculations of current offshore wind turbines is developed. The library additionally includes models for external conditions; like wind; soil and waves; and their respective influence on the structures. The library constitutes a large effort in the creation of a highly coupled multiphysics model with Modelica for an industrial project. The results obtained with this library are compared to the results from the IEA Wind Task 23 project OC31 (Offshore code comparison collaboration). The OC3 project is an international effort to define a set of loadcases and a reference wind turbine that are used to verify simulation systems on a code-to-code basis. In this paper the status and the implemented theories of the individual models at IWES are explained and verification results are presented and discussed.

Nyckelord

Offshore wind turbine simulation; aerodynamics; hydrodynamics; OC3 project; fully coupled simulation

Referenser

[1] G.B. Airy. On tides and waves. In Encyclopaedia Metropolitana; 1845.

[2] American Petroleum Institute (API);Washington DC; USA. RP 2A-LRFD: Recommended Practice for Planning; Designing and Constructing Fixed Offshore Plattforms - Load and Resistance Factor Design; 1993.

[3] A. Betz. Das Maximum der theoretisch möglichen Ausnötzung des Windes durch Windmotoren. Zeitschrift für das gesamte Turbinewesen; 26:307–309; 1920.

[4] R.E. Froude. On the part played in propulsion by differences of fluid pressure. Transactions of the Institution of Naval Architects; 30:390–405; 1889.

[5] H. Glauert. A general theory of the autogyro. ARCR R&M; 1111; 1926.

[6] H. Glauert and L. Division. Airplane Propellers; Aerodynamic Theory; volume 4. Durand WF; Berlin; 1935.

[7] IEC. Wind turbines - Part 3: Design requirements for offshore wind turbines. IEC 61400-3; 1.0 edition; 2009.

[8] J. Jonkman. TurbSim User’s Guide Version 1.5. National Renewable Energy Laboratory (NREL); Golden; Colorado; USA; 2009. doi: 10.2172/965520.

[9] J. Jonkman; S. Butterfield; W. Musial; and G. Scott. Definition of a 5-MW reference wind turbine for offshore system development. Technical report; National Renewable Energy Laboratory (NREL); Golden; Colorado; USA; 2009. doi: 10.2172/947422.

[10] J. Jonkman and W. Musial. IEA wind task 23 subtask 2: The offshore code comparison collaboration (OC3). Technical report; National Renewable Energy Laboratory (NREL); Golden; Colorado; USA; 2010.

[11] J.C. Kaimal; J.C. Wyngaard; Y. Izumi; and O.R. Coté. Spectral characteristics of surface-layer turbulence. Quarterly Journal of the Royal Meteorological Society; 98(417):563–598; 1972. doi: 10.1002/qj.49709841707.

[12] T. von Kármán. Progress in the statistical theory of turbulence. In Proceedings of the National Academy of Sciences of the United States of America; volume 34; pages 530–539; August 1948. doi: 10.1073/pnas.34.11.530.

[13] J.R. Morison; M.P. O’Brien; J.W. Johnson; and S.A. Schaaf. The force exerted by surface waves on piles. Petroleum Transactions;AIME; 189:149–154; 1950.

[14] M. Otter. Modeling; Simulation and Control with Modelica 3.0 and Dymola 7. Technical report; Deutsches Zentrum fuer Luft- und Raumfahrt e.V. DLR - Institut fuer Robotik und Mechatronik; Wessling; Germany; 2009.

[15] M. Otter; M. Malmheden; H. Elmquist; S.E. Mattsson; and C. Johnsson. New formalism for modeling of reactive and hybrid systems. In Proceedings of the 7th Modelica’2009 Conference; Como; Italy; 2009. The Modelica Association.

[16] L. Quesnel; F. Vorpahl; and M. Strobel. Hydrodynamics meet wind turbines: specification and development of a simulation tool for floating wind turbines with modelica. In Proceedings of the 20th International Offshore and Polar Engineering Conference. Fraunhofer Institute for Wind Energy and Energy Systems Technology (IWES); 2010.

[17] W.J. Rankine. On the mechanical principles of the action of propellers. Transactions of the Institution of Naval Architects; 6:13–30; 1865.

Citeringar i Crossref